Learn More
The cytoplasm is the largest part of the cell by volume and hence its rheology sets the rate at which cellular shape changes can occur. Recent experimental evidence suggests that cytoplasmic rheology can be described by a poroelastic model, in which the cytoplasm is treated as a biphasic material consisting of a porous elastic solid meshwork (cytoskeleton,(More)
At the initial stage of carcinogenesis, transformation occurs in a single cell within an epithelial sheet. However, it remains unknown what happens at the boundary between normal and transformed cells. Using Madin-Darby canine kidney (MDCK) cells transformed with temperature-sensitive v-Src, we have examined the interface between normal and Src-transformed(More)
Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that(More)
Adherens junctions and desmosomes integrate the cytoskeletons of adjacent cells into a mechanical syncitium. In doing so, intercellular junctions endow tissues with the strength needed to withstand the mechanical stresses encountered in normal physiology and to coordinate tension during morphogenesis. Though much is known about the biological mechanisms(More)
Cells generate and sustain mechanical forces within their environment as part of their normal physiology. They are active materials that can detect mechanical stimulation by the activation of mechanosensitive signaling pathways, and respond to physical cues through cytoskeletal re-organization and force generation. Genetic mutations and pathogens that(More)
  • 1