Learn More
Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we designed and built a composable, reconfigurable hardware fabric based on field programmable gate(More)
Silicon technology will continue to provide an exponential increase in the availability of raw transistors. Effectively translating this resource into application performance, however, is an open challenge that conventional superscalar designs will not be able to meet. We present WaveScalar as a scalable alternative to conventional designs. WaveScalar is a(More)
This paper describes CHiMPS, a C-based accelerator compiler for hybrid CPU-FPGA computing platforms. CHiMPSpsilas goal is to facilitate FPGA programming for high-performance computing developers. It inputs generic ANSIC code and automatically generates VHDL blocks for an FPGA. The accelerator architecture is customized with multiple caches that are tuned to(More)
In response to current technology scaling trends, architects are developing a new style of processor, known as spatial computers. A spatial computer is composed of hundreds or even thousands of simple, replicated processing elements (or PEs), frequently organized into a grid. Several current spatial computers, such as TRIPS, RAW, SmartMemories, nanoFabrics(More)
Many-cache is a memory architecture that efficiently supports caching in commercially available FPGAs. It facilitates FPGA programming for high-performance computing (HPC) developers by providing them with memory performance that is greater and power consumption that is less than their current CPU platforms, but without sacrificing their familiar, C-based(More)
Group collaboration was examined in item and associative recognition. The present study distinguishes between group effects versus collaborative processes and defines the latter as interactive information exchange among group members. By that definition, many group effects do not involve collaboration. For example, group performance can exceed individual(More)
Tiled architectures, such as RAW, SmartMemories, TRIPS, and WaveScalar, promise to address several issues facing conventional processors, including complexity, wire-delay, and performance. The basic premise of these architectures is that larger, higher-performance implementations can be constructed by replicating the basic tile across the chip. This paper(More)
High-Performance Reconfigurable Computers (HPRCs) consist of one or more standard microprocessors tightly-coupled with one or more reconfigurable FPGAs. HPRCs have been shown to provide good speedups and good cost/performance ratios, but not necessarily ease of use, leading to a slow acceptance of this technology. HPRCs introduce new design challenges, such(More)
This poster describes CHiMPS, a toolflow that aims to provide software developers with a way to program hybrid CPU-FPGA platforms using familiar tools, languages, and techniques. CHiMPS starts with C and produces a specialized spatial dataflow architecture that supports coherent caches and the shared-memory programming model. The toolflow is designed to(More)