Learn More
Topoisomerase II removes supercoils and cate-nanes generated during DNA metabolic processes such as transcription and replication. Vertebrate cells express two genetically distinct isoforms (a and b) with similar structures and biochemical activities but different biological roles. Topoisomerase IIa is essential for cell proliferation, whereas topoisomerase(More)
BACKGROUND The human 6-16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN). The predicted products of these genes are small (12.9 and 11.5 kDa respectively), hydrophobic proteins that share 36% overall amino acid identity. Gene disruption and over-expression studies have so far failed to(More)
The purpose of this study was to examine the effects of reductions in blood volume and associated oxygen-carrying capacity on the incidence of plateau at $$\dot{V}{\text{O}}$$ V ˙ O 2max. Fifteen well-trained athletes (age 23.3 ± 4.5; mass 77.4 ± 13.1 kg, height 180.1 ± 6.0 cm) completed three incremental cycle tests to volitional exhaustion, of which the(More)
BACKGROUND The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration.(More)
Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been(More)
DNA double-strand breaks (DSBs) are toxic lesions, which if improperly repaired can result in cell death or genomic instability. DSB repair is usually facilitated by the classical non-homologous end joining (C-NHEJ), or homologous recombination (HR) pathways. However, a mutagenic alternative NHEJ pathway, microhomology-mediated end joining (MMEJ), can also(More)
The correction of disease-causing mutations by single-strand oligonucleotide-templated DNA repair (ssOR) is an attractive approach to gene therapy, but major improvements in ssOR efficiency and consistency are needed. The mechanism of ssOR is poorly understood but may involve annealing of oligonucleotides to transiently exposed single-stranded regions in(More)
  • 1