Andrew P. Carter

Learn More
Genetic information encoded in messenger RNA is translated into protein by the ribosome, which is a large nucleoprotein complex comprising two subunits, denoted 30S and 50S in bacteria. Here we report the crystal structure of the 30S subunit from Thermus thermophilus, refined to 3 A resolution. The final atomic model rationalizes over four decades of(More)
Cytoplasmic dynein, the 1.2 MDa motor driving minus-end-directed motility, has been reported to move processively along microtubules, but its mechanism of motility remains poorly understood. Here, using S. cerevisiae to produce recombinant dynein with a chemically controlled dimerization switch, we show by structural and single-molecule analysis that(More)
Crystal structures of the 30S ribosomal subunit in complex with messenger RNA and cognate transfer RNA in the A site, both in the presence and absence of the antibiotic paromomycin, have been solved at between 3.1 and 3.3 angstroms resolution. Cognate transfer RNA (tRNA) binding induces global domain movements of the 30S subunit and changes in the(More)
The 30S ribosomal subunit has two primary functions in protein synthesis. It discriminates against aminoacyl transfer RNAs that do not match the codon of messenger RNA, thereby ensuring accuracy in translation of the genetic message in a process called decoding. Also, it works with the 50S subunit to move the tRNAs and associated mRNA by precisely one(More)
We have used the recently determined atomic structure of the 30S ribosomal subunit to determine the structures of its complexes with the antibiotics tetracycline, pactamycin, and hygromycin B. The antibiotics bind to discrete sites on the 30S subunit in a manner consistent with much but not all biochemical data. For each of these antibiotics, interactions(More)
Dyneins power the beating of cilia and flagella, transport various intracellular cargos and are necessary for mitosis. All dyneins have a ∼300-kDa motor domain consisting of a ring of six AAA+ domains. ATP hydrolysis in the AAA+ ring drives the cyclic relocation of a motile element, the linker domain, to generate the force necessary for movement. How the(More)
Dynactin is an essential cofactor for the microtubule motor cytoplasmic dynein-1. We report the structure of the 23-subunit dynactin complex by cryo-electron microscopy to 4.0 angstroms. Our reconstruction reveals how dynactin is built around a filament containing eight copies of the actin-related protein Arp1 and one of β-actin. The filament is capped at(More)
Cytoplasmic dynein is a minus-end-directed microtubule motor whose mechanism of movement remains poorly understood. Here, we use optical tweezers to examine the force-dependent stepping behavior of yeast cytoplasmic dynein. We find that dynein primarily advances in 8 nm increments but takes other sized steps (4-24 nm) as well. An opposing force induces more(More)
Dyneins are microtubule-based motor proteins that power ciliary beating, transport intracellular cargos, and help to construct the mitotic spindle. Evolved from ring-shaped hexameric AAA-family adenosine triphosphatases (ATPases), dynein's large size and complexity have posed challenges for understanding its structure and mechanism. Here, we present a 6(More)
We present a detailed analysis of the protein structures in the 30 S ribosomal subunit from Thermus thermophilus, and their interactions with 16 S RNA based on a crystal structure at 3.05 A resolution. With 20 different polypeptide chains, the 30 S subunit adds significantly to our data base of RNA structure and protein-RNA interactions. In addition to(More)