Andrew Oberst

Learn More
Caspase-8 has two opposing biological functions--it promotes cell death by triggering the extrinsic pathway of apoptosis, but also has a survival activity, as it is required for embryonic development, T-lymphocyte activation, and resistance to necrosis induced by tumour necrosis factor-α (TNF-α) and related family ligands. Here we show that development of(More)
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with(More)
The recognition and clearance of dead cells is a process that must occur efficiently to prevent an autoimmune or inflammatory response. Recently, a process was identified wherein the autophagy machinery is recruited to pathogen-containing phagosomes, termed MAPLC3A (LC3)-associated phagocytosis (LAP), which results in optimal degradation of the phagocytosed(More)
Caspase 8 initiates apoptosis downstream of TNF death receptors by undergoing autocleavage and processing the executioner caspase 3 (ref. ). However, the dominant function of caspase 8 is to transmit a pro-survival signal that suppresses programmed necrosis (or necroptosis) mediated by RIPK1 and RIPK3 (refs , , , , ) during embryogenesis and haematopoiesis.(More)
My introduction to cellular biology was accompanied by a schematic drawing of a generic mammalian cell, a diagram that has been reproduced thousands of times in textbooks and journals. The colors vary, but the idea remains the same: The cell appears like a tiny balloon, with a pink nucleus, red mitochondria, blue Golgi, and so on, all surrounded by a thin(More)
Caspase-2 is an initiator caspase activated in response to heat shock and other stressors that induce apoptosis. Activation of caspase-2 requires induced proximity resulting after recruitment to caspase-2 activation complexes such as the PIDDosome. We have adapted bimolecular fluorescence complementation (BiFC) to measure caspase-2 induced proximity in real(More)
The mitochondrial pathway of cell death, in which apoptosis proceeds following mitochondrial outer membrane permeabilization, release of cytochrome c, and APAF-1 apoptosome-mediated caspase activation, represents the major pathway of physiological apoptosis in vertebrates. However, the well-characterized apoptotic pathways of the invertebrates C. elegans(More)
Caspase-8, the initiator caspase of the death receptor pathway of apoptosis, its adapter molecule, FADD, required for caspase-8 activation, and cFLIPL, a caspase-8-like protein that lacks a catalytic site and blocks caspase-8-mediated apoptosis, are each essential for embryonic development. Animals deficient in any of these genes present with E10.5(More)
Caspase-8, FADD, and FLIP orchestrate apoptosis in response to death receptor ligation. Mysteriously however, these proteins are also required for normal embryonic development and immune cell proliferation, an observation that has led to their implication in several nonapoptotic processes. While many scenarios have been proposed, recent genetic and(More)
Necroptosis is a form of programmed cell death that depends on the activation of receptor interacting protein kinase-1 (RIPK1) and RIPK3 by receptors such as tumor necrosis factor (TNF) receptor-1. Structural studies indicate that activation of RIPK3 by RIPK1 involves the formation of oligomers via interactions of the RIP homotypic interaction motif (RHIM)(More)