Learn More
High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software(More)
The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes(More)
The heterozygous Pro250Arg substitution mutation in fibroblast growth factor receptor 3 (FGFR3), which increases ligand-dependent signalling, is the most common genetic cause of craniosynostosis in humans and defines Muenke syndrome. Since FGF signalling plays dosage-sensitive roles in the differentiation of the auditory sensory epithelium, we evaluated(More)
We report the first visible cytogenetic deletion involving the NF1 gene in a patient with sporadic neurofibromatosis, dysmorphic features, and marked developmental delay. The combined evidence of molecular and cytogenetic techniques based on dosage reduction, hemizygosity for microsatellite markers, high resolution G banding, and FISH analysis, predicts(More)
Lenz microphthalmia is inherited in an X-linked recessive pattern and comprises microphthalmia, mental retardation, and skeletal and other anomalies. Two loci associated with this syndrome, MAA (microphthalmia with associated anomalies) and MAA2, are situated respectively at Xq27-q28 (refs. 1,2) and Xp11.4-p21.2 (ref. 3). We identified a substitution, nt(More)
Advanced paternal age has been associated with an increased risk for spontaneous congenital disorders and common complex diseases (such as some cancers, schizophrenia, and autism), but the mechanisms that mediate this effect have been poorly understood. A small group of disorders, including Apert syndrome (caused by FGFR2 mutations), achondroplasia, and(More)
The mammalian skull vault is constructed principally from five bones: the paired frontals and parietals, and the unpaired interparietal. These bones abut at sutures, where most growth of the skull vault takes place. Sutural growth involves maintenance of a population of proliferating osteoprogenitor cells which differentiate into bone matrix-secreting(More)
Studies of mutagenesis in many organisms indicate that the majority (over 90%) of mutations are recessive to wild type. If recessiveness represents the 'default' state, what are the distinguishing features that make a minority of mutations give rise to dominant or semidominant characters? This review draws on the rapid expansion in knowledge of molecular(More)
Fibroblast growth factors were first characterized twenty years ago as mitogens of cultured fibroblasts. Despite a wealth of data from experiments in vitro, insights have begun to emerge only recently on the normal function of these growth factors in mice and humans, as a result of studies of natural and experimental mutations in the factors and their(More)
Craniofrontonasal syndrome (CFNS) is an X-linked developmental disorder that shows paradoxically greater severity in heterozygous females than in hemizygous males. Females have frontonasal dysplasia and coronal craniosynostosis (fusion of the coronal sutures); in males, hypertelorism is the only typical manifestation. Here, we show that the classical female(More)