Andrew N. Stein

Learn More
Occlusion reasoning, necessary for tasks such as navigation and object search, is an important aspect of everyday life and a fundamental problem in computer vision. We believe that the amazing ability of humans to reason about occlusions from one image is based on an intrinsically 3D interpretation. In this paper, our goal is to recover the occlusion(More)
The boundaries of objects in an image are often considered a nuisance to be “handled” due to the occlusion they exhibit. Since most, if not all, computer vision techniques aggregate information spatially within a scene, information spanning these boundaries, and therefore from different physical surfaces, is invariably and erroneously considered together.(More)
While great strides have been made in detecting and localizing specific objects in natural images, the bottom-up segmentation of unknown, generic objects remains a difficult challenge. We believe that occlusion can provide a strong cue for object segmentation and "pop-out", but detecting an object's occlusion boundaries using appearance alone is a difficult(More)
For real-time stereo vision systems, the standard method for estimating sub-pixel stereo disparity given an initial integer disparity map involves fitting parabolas to a matching cost function aggregated over rectangular windows. This results in a phenomenon known as pixel-locking, which produces artificially-peaked histograms of sub-pixel disparity. These(More)
Building on recent advances in the detection of appearance edges from multiple local cues, we present an approach for detecting occlusion boundaries which also incorporates local motion information. We argue that these boundaries have physical significance which makes them important for many high-level vision tasks and that motion offers a unique, often(More)
Current feature-based object recognition methods use information derived from local image patches. For robustness, features are engineered for invariance to various transformations, such as rotation, scaling, or affine warping. When patches overlap object boundaries, however, errors in both detection and matching will almost certainly occur due to inclusion(More)
Increasing the level of spacecraft autonomy is essential for broadening the reach of solar system exploration. Computer vision has and will continue to play an important role in increasing autonomy of both spacecraft and Earth-based robotic vehicles. This article addresses progress on computer vision for planetary rovers and landers and has four main parts.(More)
The appearance of an outdoor scene is determined to a great extent by the prevailing illumination conditions. However, most practical computer vision applications treat illumination more as a nuisance rather than a source of signal. In this dissertation, we suggest that we should instead embrace illumination, even in the challenging, uncontrolled world of(More)
Occlusion boundaries are notoriously difficult for many patch-based computer vision algorithms, but they also provide potentially useful information about scene structure and shape. Using short video clips, we present a novel method for scoring the degree to which edges exhibit occlusion. We first utilize a spatio-temporal edge detector which estimates edge(More)
We propose a novel step toward the unsupervised segmentation of whole objects by combining ldquohintsrdquo of partial scene segmentation offered by multiple soft, binary mattes. These mattes are implied by a set of hypothesized object boundary fragments in the scene. Rather than trying to find or define a single ldquobestrdquo segmentation, we generate(More)