Andrew N. Sharpley

Learn More
Agriculture and urban activities are major sources of phosphorus and nitrogen to aquatic ecosystems. Atmospheric deposition further contributes as a source of N. These nonpoint inputs of nutrients are difficult to measure and regulate because they derive from activities dispersed over wide areas of land and are variable in time due to effects of weather. In(More)
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P(More)
Continual applications of fertilizer and manure to permanent grassland or no-till soils can lead to an accumulation of P at the surface, which in turn increases the potential for P loss in overland flow. To investigate the feasibility of redistributing surface stratified P within the soil profile by plowing, Mehlich-3 P rich surface soils (128-961 mg kg(-)(More)
Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop(More)
Phosphorus application in excess of crop needs has increased the concentration of P in surface soil and runoff and led many states to develop P-based nutrient management strategies. However, insufficient data are available relating P in surface soil, surface runoff, and subsurface drainage to develop sound guidelines. Thus, we investigated P release from(More)
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved(More)
fate) reduced WEP concentrations in the litter relative to untreated chicken litter. Similarly, when alum-treated Water-extractable P (WEP) in manure is increasingly used as an and untreated litters were broadcast onto pastures, difenvironmental indicator as it is correlated with P in runoff from soils recently amended with manure. Little information exists(More)
Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1))(More)
The water quality response to implementation of conservation measures across watersheds has been slower and smaller than expected. This has led many to question the efficacy of these measures and to call for stricter land and nutrient management strategies. In many cases, this limited response has been due to the legacies of past management activities,(More)
Many states have invested significant resources to identify components of their Phosphorus (P) Index that reliably estimate the relative risk of P loss and incentivize conservation management. However, differences in management recommendations and manure application guidelines for similar field conditions among state P Indices, coupled with minimal(More)