Learn More
It is essential to understand the combined effects of elevated [CO2] and temperature on insect herbivores when attempting to forecast climate change responses of diverse ecosystems. Plant species differ in foliar chemistry, and this may result in idiosyncratic plant-mediated responses of insect herbivores at elevated [CO2] and temperature. We measured the(More)
Changes in host plant quality, including foliar amino acid concentrations, resulting from global climate change and attack from multiple herbivores, have the potential to modify the pest status of insect herbivores. This study investigated how mechanically simulated root herbivory of lucerne (Medicago sativa) before and after aphid infestation affected the(More)
Investigating the impacts of predicted changes in our atmosphere and climate change on insect– plant interactions is a widely pursued area of research. To date, the majority of experimental studies have tested the impacts of single environmental factors on insect–plant interactions, but meta-analyses have clearly illustrated the importance of investigating(More)
Herbivorous insects are important nutrient cyclers that produce nutrient-rich frass. The impact of elevated atmospheric [CO2] on insect-mediated nutrient cycling, and its potential interaction with precipitation and temperature, is poorly understood and rarely quantified. We tested these climatic effects on frass deposition in a nutrient-limited mature(More)
Climate change factors such as elevated atmospheric carbon dioxide concentrations (e[CO2]) and altered rainfall patterns can alter leaf composition and phenology. This may subsequently impact insect herbivory. In sclerophyllous forests insects have developed strategies, such as preferentially feeding on new leaf growth, to overcome physical or foliar(More)
  • 1