Andrew McCallum

Learn More
We present conditional random fields , a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions made in those models. Conditional random fields also avoid(More)
Latent variable models have the potential to add value to large document collections by discovering interpretable, low-dimensional subspaces. In order for people to use such models, however, they must trust them. Unfortunately, typical dimensionality reduction methods for text, such as latent Dirichlet allocation, often produce low-dimensional subspaces(More)
This paper presents an LDA-style topic model that captures not only the low-dimensional structure of data, but also how the structure changes over time. Unlike other recent work that relies on Markov assumptions or discretization of time, here each topic is associated with a continuous distribution over timestamps, and for each generated document, the(More)
Many tasks involve predicting a large number of variables that depend on each other as well as on other observed variables. Structured prediction methods are essentially a combination of classification and graphical modeling. They combine the ability of graphical models to compactly model multivariate data with the ability of classification methods to(More)
Traditional relation extraction predicts relations within some fixed and finite target schema. Machine learning approaches to this task require either manual annotation or, in the case of distant supervision, existing structured sources of the same schema. The need for existing datasets can be avoided by using a universal schema: the union of all involved(More)
Models for many natural language tasks benefit from the flexibility to use overlapping, non-independent features. For example, the need for labeled data can be drastically reduced by taking advantage of domain knowledge in the form of word lists, part-of-speech tags, character ngrams, and capitalization patterns. While it is difficult to capture such(More)
Several recent works on relation extraction have been applying the distant supervision paradigm: instead of relying on annotated text to learn how to predict relations, they employ existing knowledge bases (KBs) as source of supervision. Crucially, these approaches are trained based on the assumption that each sentence which mentions the two related(More)
There is rising interest in vector-space word embeddings and their use in NLP, especially given recent methods for their fast estimation at very large scale. Nearly all this work, however, assumes a single vector per word type—ignoring polysemy and thus jeopardizing their usefulness for downstream tasks. We present an extension to the Skip-gram model that(More)