Learn More
The dorsolateral reticular formation of the caudal medulla, or the lateral tegmental field (LTF), has been classified as the brain's "vomiting center", as well as an important region in regulating sympathetic outflow. We examined the responses of LTF neurons in cats to rotations of the body that activate vestibular receptors, as well as to stimulation of(More)
The vestibular nuclei integrate information from vestibular and proprioceptive afferents, which presumably facilitates the maintenance of stable balance and posture. However, little is currently known about the processing of sensory signals from the limbs by vestibular nucleus neurons. This study tested the hypothesis that limb movement is encoded by(More)
Vomiting and nausea can be elicited by a variety of stimuli, although there is considerable evidence that the same brainstem areas mediate these responses despite the triggering mechanism. A variety of experimental approaches showed that nucleus tractus solitarius, the dorsolateral reticular formation of the caudal medulla (lateral tegmental field), and the(More)
OBJECTIVE To determine whether pediatric and adult patients with superior canal dehiscence (SCD) at the superior petrosal sinus (SPS) develop superior canal dehiscence syndrome (SCDS). STUDY DESIGN Retrospective review. SETTING Tertiary care academic medical center. PATIENTS Pediatric and adult patients with SPS-associated SCD were identified from a(More)
BACKGROUND We report the systematic analysis of the ultrastructural and cytological histopathology of vestibular endorgans acquired from labyrinthectomy in Meniere's disease. METHODS 17 subjects with intractable Meniere's disease and ipsilateral non-serviceable hearing presenting to the Neurotology Clinic from 1997 to 2006 who chose ablative(More)
Neurons located in the caudal aspect of the vestibular nucleus complex have been shown to receive visceral inputs and project to brainstem regions that participate in generating emesis, such as nucleus tractus solitarius and the “vomiting region” in the lateral tegmental field (LTF). Consequently, it has been hypothesized that neurons in the caudal(More)
Vestibular nucleus neurons have been shown to respond to stimulation of afferents innervating the limbs. However, a limitation in the potential translation of these findings is that they were obtained from decerebrate or anesthetized animals. The goal of the present study was to determine whether stimulation of hindlimb nerves similarly affects vestibular(More)
Integration of vestibular and proprioceptive afferent information within the central nervous system is a critical component of postural regulation. We recently demonstrated that labyrinthine and hindlimb signals converge onto vestibular nucleus neurons, such that hindlimb movement modulates the activity of these cells. However, it is unclear whether similar(More)