Learn More
Time-correlated single photon counting and burst illumination laser data can be used for range profiling and target classification. In general, the problem is to analyze the response from a histogram of either photon counts or integrated intensities to assess the number, positions, and amplitudes of the reflected returns from object surfaces. The goal of(More)
We introduce the Hierarchical Partitioned Particle Filter (HPPF) designed specifically for articulated human tracking. The HPPF is motivated by the hierarchical dependency between the human body parameters and the partial independence between certain of those parameters. The tracking is model based and follows the analysis by synthesis principle. The(More)
We describe a novel architecture for automotive vision organized on five levels of abstraction, i.e., sensor, data, semantic, reasoning, and resource allocation levels, respectively. Although we implement and evaluate processes to detect and classify other participants within the immediate environment of a moving vehicle, our main emphasis is on the(More)
We describe improvements to a time-of-flight sensor utilising the time-correlated single-photon counting technique employing a commercially-available silicon-based photon-counting module. By making modifications to the single-photon detection circuitry and the data analysis techniques, we experimentally demonstrate improved resolution between multiple(More)
We describe a scanning time-of-flight system which uses the time-correlated single-photon counting technique to produce three-dimensional depth images of distant, noncooperative surfaces when these targets are illuminated by a kHz to MHz repetition rate pulsed laser source. The data for the scene are acquired using a scanning optical system and an(More)
We demonstrate subcentimeter depth profiling at a stand off distance of 330 m using a time-of-flight approach based on time-correlated single-photon counting. For the first time to our knowledge, the photon-counting time-of-flight technique was demonstrated at a wavelength of 1550 nm using a superconducting nanowire single-photon detector. The performance(More)