Andrew M. Swensen

Learn More
The stomatogastric ganglion of the crab, Cancer borealis, is modulated by >20 different substances, including numerous neuropeptides. One of these peptides, proctolin, activates an inward current that shows strong outward rectification (Golowasch and Marder, 1992). Decreasing the extracellular Ca(2+) concentration linearizes the current-voltage curve of the(More)
Neuromodulation provides considerable flexibility to the output of neural networks. In spite of the extensive literature documenting the presence of modulatory peptide co-transmitters in many neurons, considerably less is known about the specific roles of co-transmission in circuit function. This review describes some of the potential consequences of(More)
Cerebellar Purkinje neurons have intrinsic membrane properties that favor burst firing, seen not only during complex spikes elicited by climbing fiber input but also with direct electrical stimulation of cell bodies. We examined the ionic conductances that underlie all-or-none burst firing elicited in acutely dissociated mouse Purkinje neurons by short(More)
Six neuromodulators [proctolin, Cancer borealis tachykinin-related peptide Ia, crustacean cardioactive peptide (CCAP), red pigment-concentrating hormone, TNRNFLRFamide, and pilocarpine] converge onto the same voltage-dependent inward current in stomatogastric ganglion (STG) neurons of the crab C. borealis. We show here that each of these modulators acts on(More)
Cerebellar Purkinje neurons often generate all-or-none burst firing in response to depolarizing stimuli. Voltage-clamp experiments using action potential waveforms show that burst firing depends on small net inward currents that flow after spikes and reflect the net balance between multiple large currents. Given this, burst firing is surprisingly robust in(More)
The multifunctional neural circuits in the crustacean stomatogastric ganglion (STG) are influenced by many small-molecule transmitters and neuropeptides that are co-localized in identified projection neurons to the STG. We describe the pattern of gamma-aminobutyric acid (GABA) immunoreactivity in the stomatogastric nervous system of the crab Cancer borealis(More)
Cav2.2 channels play a critical role in pain signaling by controlling synaptic transmission between dorsal root ganglion neurons and dorsal horn neurons. The Cav2.2-selective peptide blocker ziconotide (Prialt, Elan Pharmaceuticals, Dublin, Ireland) has proven efficacious in pain relief, but has a poor therapeutic index and requires intrathecal(More)
Voltage-gated calcium channel (Ca(v))2.2 (N-type calcium channels) are key components in nociceptive transmission pathways. Ziconotide, a state-independent peptide inhibitor of Ca(v)2.2 channels, is efficacious in treating refractory pain but exhibits a narrow therapeutic window and must be administered intrathecally. We have discovered an N-triazole(More)
The voltage-gated potassium channel, human Ether-à-go-go related gene (hERG), represents the molecular component of IKr, one of the potassium currents involved in cardiac action potential repolarization. Inhibition of IKr increases the duration of the ventricular action potential, reflected as a prolongation of the QT interval in the electrocardiogram, and(More)
The P-type calcium current is mediated by a voltage-sensing CaV2.1 alpha subunit in combination with modulatory auxiliary subunits. In Purkinje neurones, this current has distinctively slow inactivation kinetics that may depend on alternative splicing of the alpha subunit and/or association with different CaVbeta subunits. To better understand the molecular(More)