Andrew M Riley

Learn More
Receptor-mediated generation of inositol 1,4,5-trisphosphate (InsP3) initiates Ca2+ release from intracellular stores and the subsequent activation of store-operated calcium influx. InsP3 is metabolized within seconds by 5-phosphatase and 3-kinase, yielding Ins(1,4)P2 and inositol 1,3,4,5-tetrakisphosphate (InsP4), respectively. Some studies have suggested(More)
Phosphoinositide 3-kinase (PI 3-K) is implicated in a wide array of biological and pathophysiological responses, including tumorigenesis, invasion and metastasis, therefore specific inhibitors of the kinase may prove useful in cancer therapy. We propose that specific inositol polyphosphates have the potential to antagonize the activation of PI 3-K pathways(More)
The purpose of this study was to investigate the antiangiogenic and in vivo properties of the recently identified phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor Inositol(1,3,4,5,6) pentakisphosphate [Ins(1,3,4,5,6)P5]. Because activation of the PI3K/Akt pathway is a crucial step in some of the events leading to angiogenesis, the effect of(More)
Phosphatidylinositol 3,5-bisphosphate is a membrane lipid found in all eukaryotes so far studied but downstream effector proteins of this lipid have yet to be identified. Here we report the use of cDNA phage libraries in conjunction with synthetic biotinylated derivatives of phosphatidylinositol 3,5-bisphosphate in the identification of a mammalian(More)
Synthetic analogues of inositol trisphosphate (IP(3)), all of which included structures equivalent to the 4,5-bisphosphate of (1,4,5)IP(3), were used to probe the recognition properties of rat full-length type 1, 2 and 3 IP(3) receptors expressed in insect Spodoptera frugiperda 9 cells. Using equilibrium competition binding with [(3)H](1,4,5)IP(3) in(More)
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are ubiquitous intracellular Ca2+ channels. IP(3) binding to the IP(3)-binding core (IBC) near the N terminus initiates conformational changes that lead to opening of a pore. The mechanisms underlying this process are unresolved. We synthesized 2-O-modified IP(3) analogs that are partial agonists of IP(3)R.(More)
Casein kinase 2 (CK2) was one of the first protein kinases to be discovered and has been suggested to be responsible for as much as one-fifth of the eukaryotic phosphoproteome. Despite being responsible for the phosphorylation of a vast array of proteins central to numerous dynamic cellular processes, the activity of CK2 appears to be unregulated. In the(More)
The pattern recognition receptor RIG-I is critical for Type-I interferon production. However, the global regulation of RIG-I signaling is only partially understood. Using a human genome-wide RNAi-screen, we identified 226 novel regulatory proteins of RIG-I mediated interferon-β production. Furthermore, the screen identified a metabolic pathway that(More)
Previous studies have shown that adenophostin A is a potent initiator of the activation of SOCs (store-operated Ca2+ channels) in rat hepatocytes, and have suggested that, of the two subtypes of Ins(1,4,5)P3 receptor predominantly present in rat hepatocytes [Ins(1,4,5)P3R1 (type I receptor) and Ins(1,4,5)P3R2 (type II receptor)], Ins(1,4,5)P3R1s are(More)
Adenophostin A is the most potent known agonist of inositol 1,4,5-trisphosphate (InsP(3)) receptors. Ca(2+) release from permeabilized hepatocytes was 9.9 +/- 1.6-fold more sensitive to adenophostin A (EC(50), 14.7 +/- 2.4 nM) than to InsP(3) (145 +/- 10 nM), consistent with the greater affinity of adenophostin A for hepatic InsP(3) receptors (K(d) = 0.48(More)