Andrew L Snow

Learn More
X-linked lymphoproliferative disease (XLP1), described in the mid-1970s and molecularly defined in 1998, and XLP2, reported in 2006, are prematurely lethal genetic immunodeficiencies that share susceptibility to overwhelming inflammatory responses to certain infectious triggers. Signaling lymphocytic activation molecule-associated protein (SAP; encoded by(More)
X-linked lymphoproliferative disease (XLP) is a rare congenital immunodeficiency that leads to an extreme, usually fatal increase in the number of lymphocytes upon infection with EBV. It is most commonly defined molecularly by loss of expression of SLAM-associated protein (SAP). Despite this, there is little understanding of how SAP deficiency causes(More)
NF-kappaB is a DNA-binding protein complex that transduces a variety of activating signals from the cytoplasm to specific sets of target genes. To understand the preferential recruitment of NF-kappaB to specific gene regulatory sites, we used NF-kappaB p65 in a tandem affinity purification and mass spectrometry proteomic screen. We identified ribosomal(More)
The activation of gp130, a shared signal-transducing receptor for a family of cytokines, is initiated by recognition of ligand followed by oligomerization into a higher order signaling complex. Kaposi's sarcoma-associated herpesvirus encodes a functional homolog of human interleukin-6 (IL-6) that activates human gp130. In the 2.4 angstrom crystal structure(More)
CD72, a 45-kDa type II transmembrane glycoprotein carrying an ITIM motif, is believed to be an inhibitory coreceptor of the BCR. Mature B cells lacking CD72 show enhanced Ca(2+) mobilization and are hyperproliferative in response to BCR ligation. However, the signal transduction pathways downstream of BCR signaling that transmit the inhibitory effect of(More)
Triggering of lymphocyte antigen receptors is the critical first step in the adaptive immune response against pathogens. T cell receptor (TCR) ligation assembles a large membrane signalosome, culminating in NF-kappaB activation [1,2]. Recently, caspase-8 was found to play a surprisingly prominent role in lymphocyte activation in addition to its well-known(More)
Next-generation DNA sequencing has accelerated the genetic characterization of many human primary immunodeficiency diseases (PIDs). These discoveries can be lifesaving for the affected patients and also provide a unique opportunity to study the effect of specific genes on human immune function. In the past 18 months, a number of independent groups have(More)
BACKGROUND Deficiency of X-linked inhibitor of apoptosis (XIAP), caused by BIRC4 gene mutations, is the second known cause of X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency that often presents with life-threatening hemophagocytic lymphohistiocytosis (HLH). Rapid diagnosis of the known genetic causes of HLH, including XIAP(More)
Controlled expansion and contraction of lymphocytes both during and after an adaptive immune response are imperative to sustain a healthy immune system. Both extrinsic and intrinsic pathways of lymphocyte apoptosis are programmed to eliminate cells at the proper time to ensure immune homeostasis. Genetic disorders of apoptosis described in mice and humans(More)
The human IL-4 receptor contains a sequence (the 14R motif) centered on Y497 that, when phosphorylated, interacts with phosphotyrosine-binding (PTB) domain proteins. Here, we describe a PTB domain protein, FRIP, that is phosphorylated in response to cytokine stimulation. FRIP is related to the rasGAP-associated protein p62dok and is bound by the N-terminal(More)