Andrew L. Goodwin

Learn More
We show that silver(I) hexacyanocobaltate(III), Ag3[Co(CN)6], exhibits positive and negative thermal expansion an order of magnitude greater than that seen in other crystalline materials. This framework material expands along one set of directions at a rate comparable to the most weakly bound solids known. By flexing like lattice fencing, the framework(More)
Throughout much of condensed matter science, correlated disorder is a key to material function. While structural and compositional defects are known to exist within a variety of metal-organic frameworks (MOFs), the prevailing understanding is that these defects are only ever included in a random manner. Here we show--using a combination of diffuse(More)
DFT calculations have been used to provide insights into the origin of the colossal positive and negative thermal expansion in Ag3[Co(CN)6]. The results confirm that the positive expansion within the trigonal basal plane and the negative expansion in the orthogonal direction are coupled due to the existence of a network defined by nearly-rigid bonds within(More)
Local structure in the colossal thermal expansion material Ag3[Co(CN)6] is studied here using a combination of neutron total scattering and reverse Monte Carlo (RMC) analysis. We show that the large thermal variations in cell dimensions occur with minimal distortion of the [Co(CN)6] coordination polyhedra, but involve significant flexing of the Co–CN–Ag–NC–(More)
The compositional dependence of thermal expansion behaviour in 19 different perovskite-like metal-organic frameworks (MOFs) of composition [A(I)][M(II)(HCOO)3] (A = alkylammonium cation; M = octahedrally-coordinated divalent metal) is studied using variable-temperature X-ray powder diffraction measurements. While all systems show essentially the same type(More)
A new approach to the reverse Monte Carlo analysis of total scattering data from polycrystalline materials is presented. The essential new feature is the incorporation of an explicit analysis of the Bragg peaks using a profile refinement, taking account of the instrument resolution function. Other new features including fitting data from magnetic materials,(More)
We review the work carried out within the eMinerals project to develop eScience solutions that facilitate a new generation of molecular-scale simulation work. Technological developments include integration of compute and data systems, developing of collaborative frameworks and new researcher-friendly tools for grid job submission, XML data representation,(More)
ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300 degrees C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400 degrees C. Neutron and x-ray total scattering data(More)