Learn More
Ligand-dependent activation of transcription by nuclear receptors (NRs) is mediated by interactions with coactivators. Receptor agonists promote coactivator binding, and antagonists block coactivator binding. Here we report the crystal structure of the human estrogen receptor alpha (hER alpha) ligand-binding domain (LBD) bound to both the agonist(More)
In eukaryotes, the ubiquitous and abundant members of the 90 kilodalton heat-shock protein (hsp90) chaperone family facilitate the folding and conformational changes of a broad array of proteins important in cell signaling, proliferation, and survival. Here we describe the effects of nucleotides on the structure of full-length HtpG, the Escherichia coli(More)
Extracellular ATP activates cell-surface metabotropic and ionotropic nucleotide (P2) receptors in vascular, neural, connective, and immune tissues. These P2 receptors mediate a wealth of physiological processes, including nitric oxide-dependent vasodilation of vascular smooth muscle and fast excitatory neurotransmission in sensory afferents. Although ATP is(More)
Hsp90 is a ubiquitous, well-conserved molecular chaperone involved in the folding and stabilization of diverse proteins. Beyond its capacity for general protein folding, Hsp90 influences a wide array of cellular signaling pathways that underlie key biological and disease processes. It has been proposed that Hsp90 functions as a molecular clamp, dimerizing(More)
Centrioles are ancient organelles that build centrosomes, the major microtubule-organizing centers of animal cells. Extra centrosomes are a common feature of cancer cells. To investigate the importance of centrosomes in the proliferation of normal and cancer cells, we developed centrinone, a reversible inhibitor of Polo-like kinase 4 (Plk4), a(More)
Assembly of SAS-6 dimers to form the centriolar cartwheel requires the ZYG-1/Plk4 kinase. Here, we show that ZYG-1 recruits SAS-6 to the mother centriole independently of its kinase activity; kinase activity is subsequently required for cartwheel assembly. We identify a direct interaction between ZYG-1 and the SAS-6 coiled coil that explains its kinase(More)
The ability of enzymes to assemble into visible supramolecular complexes is a widespread phenomenon. Such complexes have been hypothesized to play a number of roles; however, little is known about how the regulation of enzyme activity is coupled to the assembly/disassembly of these cellular structures. CTP synthase is an ideal model system for addressing(More)
PDE4 inhibitors have the potential to alleviate the symptoms and underlying inflammation associated with dry eye. Disclosed herein is the development of a novel series of water-soluble PDE4 inhibitors. Our studies led to the discovery of coumarin 18, which is effective in a rabbit model of dry eye and a tear secretion test in rats.
The R,R enantiomer of 5,11-cis-diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol (THC) exerts opposite effects on the transcriptional activity of the two estrogen receptor (ER) subtypes, ER alpha and ER beta. THC acts as an ER alpha agonist and as an ER beta antagonist. We have determined the crystal structures of the ER alpha ligand binding domain (LBD) bound(More)
In normal human cells, centrosome loss induced by centrinone-a specific centrosome duplication inhibitor-leads to irreversible, p53-dependent G1 arrest by an unknown mechanism. A genome-wide CRISPR/Cas9 screen for centrinone resistance identified genes encoding the p53-binding protein 53BP1, the deubiquitinase USP28, and the ubiquitin ligase TRIM37.(More)