Learn More
In eukaryotes, the ubiquitous and abundant members of the 90 kilodalton heat-shock protein (hsp90) chaperone family facilitate the folding and conformational changes of a broad array of proteins important in cell signaling, proliferation, and survival. Here we describe the effects of nucleotides on the structure of full-length HtpG, the Escherichia coli(More)
Ligand-dependent activation of transcription by nuclear receptors (NRs) is mediated by interactions with coactivators. Receptor agonists promote coactivator binding, and antagonists block coactivator binding. Here we report the crystal structure of the human estrogen receptor alpha (hER alpha) ligand-binding domain (LBD) bound to both the agonist(More)
Extracellular ATP activates cell-surface metabotropic and ionotropic nucleotide (P2) receptors in vascular, neural, connective, and immune tissues. These P2 receptors mediate a wealth of physiological processes, including nitric oxide-dependent vasodilation of vascular smooth muscle and fast excitatory neurotransmission in sensory afferents. Although ATP is(More)
Centrioles are ancient organelles that build centrosomes, the major microtubule-organizing centers of animal cells. Extra centrosomes are a common feature of cancer cells. To investigate the importance of centrosomes in the proliferation of normal and cancer cells, we developed centrinone, a reversible inhibitor of Polo-like kinase 4 (Plk4), a(More)
Assembly of SAS-6 dimers to form the centriolar cartwheel requires the ZYG-1/Plk4 kinase. Here, we show that ZYG-1 recruits SAS-6 to the mother centriole independently of its kinase activity; kinase activity is subsequently required for cartwheel assembly. We identify a direct interaction between ZYG-1 and the SAS-6 coiled coil that explains its kinase(More)
Estrogen receptor (ER) binds to estrogen response elements in target genes and recruits a coactivator complex of CBP-pl60 that mediates stimulation of transcription. ER also activates transcription at AP-1 sites that bind the Jun/Fos transcription factors, but not ER. We review the evidence regarding mechanisms whereby ER increases the activity of Jun/Fos(More)
The ability of enzymes to assemble into visible supramolecular complexes is a widespread phenomenon. Such complexes have been hypothesized to play a number of roles; however, little is known about how the regulation of enzyme activity is coupled to the assembly/disassembly of these cellular structures. CTP synthase is an ideal model system for addressing(More)
The R,R enantiomer of 5,11-cis-diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol (THC) exerts opposite effects on the transcriptional activity of the two estrogen receptor (ER) subtypes, ER alpha and ER beta. THC acts as an ER alpha agonist and as an ER beta antagonist. We have determined the crystal structures of the ER alpha ligand binding domain (LBD) bound(More)
We have developed a phage display system that provides a means to select variants of the IgG binding domain of peptostreptococcal protein L that fold from large combinatorial libraries. The premise underlying the selection scheme is that binding of protein L to IgG requires that the protein be properly folded. Using a combination of molecular biological and(More)
alpha-Lytic protease is encoded with a large (166 amino acid) N-terminal pro region that is required transiently both in vivo and in vitro for the correct folding of the protease domain [Silen, J. L. , and Agard, D. A. (1989) Nature 341, 462-464; Baker, D., et al. (1992) Nature 356, 263-265]. The pro region also acts as a potent inhibitor of the mature(More)