Andrew J Wilde

Learn More
An expression screen of a rat cDNA library for sequences encoding Golgi-localized integral membrane proteins identified a protein with an apparent novel topology, i.e. with both an N-terminal transmembrane domain and a C-terminal glycosyl-phosphatidylinositol (GPI) anchor. Our data are consistent with this. Thus, the protein would have a topology that, in(More)
Epidermal growth factor (EGF) binding to its receptor causes rapid phosphorylation of the clathrin heavy chain at tyrosine 1477, which lies in a domain controlling clathrin assembly. EGF-mediated clathrin phosphorylation is followed by clathrin redistribution to the cell periphery and is the product of downstream activation of SRC kinase by EGF receptor(More)
Ran, a GTPase in the Ras superfamily, is proposed to be a spatial regulator of microtubule spindle assembly by maintaining key spindle assembly factors in an active state close to chromatin. RanGTP is hypothesized to maintain the spindle assembly factors in the active state by binding to importin beta, part of the nuclear transport receptor complex, thereby(More)
BACKGROUND Vertebrates share the same general body plan and organs, possess related sets of genes, and rely on similar physiological mechanisms, yet show great diversity in morphology, habitat and behavior. Alteration of gene regulation is thought to be a major mechanism in phenotypic variation and evolution, but relatively little is known about the broad(More)
Plus-end tracking proteins, such as EB1 and the dynein/dynactin complex, regulate microtubule dynamics. These proteins are thought to stabilize microtubules by forming a plus-end complex at microtubule growing ends with ill-defined mechanisms. Here we report the crystal structure of two plus-end complex components, the carboxy-terminal dimerization domain(More)
TPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the(More)
The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae type III secreted effector HopZ1a interacts with tubulin(More)
Cell division is achieved by a plasma membrane furrow that must ingress between the segregating chromosomes during anaphase [1-3]. The force that drives furrow ingression is generated by the actomyosin cytoskeleton, which is linked to the membrane by an as yet undefined molecular mechanism. A key component of the membrane furrow is anillin. Upon targeting(More)
The GTPase Ran regulates multiple cellular functions throughout the cell cycle, including nucleocytoplasmic transport, nuclear membrane assembly, and spindle assembly. Ran mediates spindle assembly by affecting multiple spindle assembly pathways: microtubule dynamics, microtubule motor activity, and spindle pole assembly. Ran is predicted to facilitate(More)
During early development in Drosophila, pseudocleavage furrows in the syncytial embryo prevent contact between neighboring spindles, thereby ensuring proper chromosome segregation. Here we demonstrate that the GTPase Ran regulates pseudocleavage furrow organization. Ran can exert control on pseudocleavage furrows independently of its role in regulating the(More)