Andrew J. Stagg

Learn More
BACKGROUND "Probiotic" bacteria are effective in treating some inflammatory bowel diseases. However which bacteria confer benefit and mechanisms of action remain poorly defined. Dendritic cells, which are pivotal in early bacterial recognition, tolerance induction, and shaping of T cell responses, may be central in mediating the effects of these bacteria.(More)
The intestinal microbiota plays a fundamental role in maintaining immune homeostasis. In controlled clinical trials probiotic bacteria have demonstrated a benefit in treating gastrointestinal diseases, including infectious diarrhea in children, recurrent Clostridium difficile-induced infection, and some inflammatory bowel diseases. This evidence has led to(More)
BACKGROUND & AIMS Dendritic cells (DCs) recognize and respond to microbial structures using pattern recognition receptors, including Toll-like receptors (TLRs). In the intestine, DCs are pivotal in tolerance induction and direct the differentiation of T cells. We aimed to identify changes in intestinal DCs that may underlie the dysregulated immune response(More)
BACKGROUND AND AIMS The intestinal microbiota play a pivotal role in the inflammation associated with Crohn's disease through their interaction with the mucosal immune system. Some bifidobacteria species are immunoregulatory and induce increased dendritic cell interleukin 10 (IL-10) release in vitro. Fructo-oligosaccharides (FOS) increase faecal and mucosal(More)
BACKGROUND The mechanism of CD4 T-cell decline in HIV-1 infection is unclear, but the association with plasma viral RNA load suggests viral replication is involved. Indeed, viremic controller patients with low viral RNA loads typically maintain high CD4 T-cell counts. Within a local cohort of 86 viremic controllers, we identify a subgroup (18 "discord(More)
Dendritic cells are antigen presenting cells that are likely to be pivotal in the balance between tolerance and active immunity to commensal microorganisms that is fundamental to inflammatory conditions, including Crohn's disease and ulcerative colitis. Interactions between dendritic cells and microbial products are discussed and how they contribute to(More)
INTRODUCTION The commensal intestinal microbiota drive the inflammation associated with Crohn's disease. However, bacteria such as bifidobacteria and Faecalibacterium prausnitzii appear to be immunoregulatory. In healthy subjects the intestinal microbiota are influenced by prebiotic carbohydrates such as fructo-oligosaccharides (FOS). Preliminary data(More)
Dendritic cells (DC) in the colon may regulate intestinal immunity but remain poorly characterized. In this study a CD11c(+)HLA-DR(+)lin(-) (CD3(-)CD14(-)CD16(-)CD19(-)CD34(-)) population has been identified by flow cytometry in cells obtained by rapid collagenase digestion of human colonic and rectal biopsies. These day 0 (d0) CD11c(+)HLA-DR(+)lin(-) cells(More)
Different antigen-presenting cells elicit responses in different T-cell populations for primary activation, secondary stimulation and cytotoxic effector functions. Maturing bone marrow derived dendritic cells may acquire and process antigens, transport them to lymph nodes and activate naive T cells located there. By contrast, follicular dendritic cells,(More)
Dendritic cells (DCs) play a key role in discriminating between commensal microorganisms and potentially harmful pathogens and in maintaining the balance between tolerance and active immunity. The regulatory role of DC is of particular importance in the gut where the immune system lies in intimate contact with the highly antigenic external environment.(More)