Andrew J Roe

Learn More
Enterohaemorrhagic Escherichia coli O157 : H7 is a human pathogen that causes no apparent disease in cattle, its primary reservoir host. Recent research has demonstrated that E. coli O157 : H7 predominately colonizes the distal few centimetres of the bovine rectum, and in this study, the LEE4 operon encoding a type III secretion system translocon and(More)
During inhibition of cell growth by weak acids, there is substantial accumulation of the weak acid anions in the cytoplasm. This study was undertaken to determine the impact of anion accumulation on cellular pools. At pH 6, growth in the presence of 8 mM acetate led to an internal pool of greater than 240 mM acetate anion and resulted in reduced levels of(More)
Recent work has highlighted a number of compounds that target bacterial virulence by affecting gene regulation. In this work, we show that small-molecule inhibitors affect the expression of the type III secretion system (T3SS) of Escherichia coli O157:H7 in liquid culture and when this bacterium is attached to bovine epithelial cells. Inhibition of T3SS(More)
Type III secretion (T3S) plays a pivotal role in the colonization of ruminant hosts by Enterohemorrhagic Escherichia coli (EHEC). The T3S system translocates effector proteins into host cells to promote bacterial attachment and persistence. The repertoire and variation in prophage regions underpins differences in the pathogenesis and epidemiology of EHEC(More)
The isolation of rhizobial strains which exhibit an intrinsic tolerance to acidic conditions has been reported and has facilitated studies on the basic mechanisms underlying acid tolerance. Rhizobium tropici strain CIAT899 displays a high intrinsic tolerance to acidity and therefore was used in this work to study the molecular basis of bacterial responses(More)
Type III secretion (T3S) systems enable the injection of bacterial proteins through membrane barriers into host cells, either from outside the host cell or from within a vacuole. This system is required for colonization of their ruminant reservoir hosts by enterohaemorrhagic Escherichia coli (EHEC) and might also be important for the etiology of disease in(More)
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 causes gastrointestinal disease with the potential for life-threatening sequelae. Although Shiga-like toxins are responsible for much of the serious pathology in humans, the bacterium also possesses a type III protein secretion system that is responsible for intimate attachment to host intestinal mucosa.(More)
Type III secretion systems of enteric bacteria enable translocation of effector proteins into host cells. Secreted proteins of verotoxigenic Escherichia coli O157 strains include components of a translocation apparatus, EspA, -B, and -D, as well as "effectors" such as the translocated intimin receptor (Tir) and the mitochondrion-associated protein (Map).(More)
The plasmid-encoded Per regulatory locus of enteropathogenic Escherichia coli (EPEC) is generally considered to consist of three genes, perA, perB and perC. PerA, a member of the AraC-like family of transcriptional regulators, is known to be an activator of its own promoter (autoactivation) as well as of the plasmid-located bfp operon encoding(More)
The mechanism by which methionine relieves the growth inhibition of Escherichia coli K-12 that is caused by organic weak acid food preservatives was investigated. In the presence of 8 mM acetate the specific growth rate of E. coli Frag1 (in MacIlvaine's minimal medium pH 6.0) is reduced by 50%. Addition of methionine restores growth to 80% of that observed(More)