Learn More
The Madden-Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal timescales and planetary spatial scales. Despite the primary importance of the MJO and the decades of research progress since its original discovery, a generally accepted theory for its essential mechanisms has remained elusive. Here, we(More)
Recent observational analysis reveals the central role of three multicloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large-scale convectively coupled Kelvin waves, westward propagating two-day waves, and the Madden–Julian oscillation. A systematic model convective pa-rameterization highlighting the dynamic role of(More)
The formation of smng and potentially singular fronts in a two-dimensional quasi-geostrophic active scalar is studied here through the symbiotic interaction of mathematical theory and numerical experiments. This active scalar represents the temperature evolving on the two dimensional boundary of a rapidly rotating half space with small Rosshy and Ekman(More)
A minimal, nonlinear oscillator model is analyzed for the Madden–Julian oscillation (MJO) ''skeleton'' (i.e., its fundamental features on intraseasonal/planetary scales), which includes the following: (i) a slow eastward phase speed of roughly 5 m s 21 , (ii) a peculiar dispersion relation with dv/dk ' 0, and (iii) a horizontal quadrupole vortex structure.(More)
Quantifying the uncertainty for the present climate and the predictions of climate change in the suite of imperfect Atmosphere Ocean Science (AOS) computer models is a central issue in climate change science. Here, a systematic approach to these issues with firm mathematical underpinning is developed through empirical information theory. An information(More)
A simplified set of equations is derived systematically below for the interaction of large scale flow fields and precipitation in the tropical atmosphere. These equations, the Tropical Climate Model, have the form of a shallow water equation and an equation for moisture coupled through a strongly nonlinear source term. This source term, the precipitation,(More)