Andrew J. Hartung

Learn More
Mouse Tabby (Ta) and X chromosome-linked human EDA share the features of hypoplastic hair, teeth, and eccrine sweat glands. We have cloned the Ta gene and find it to be homologous to the EDA gene. The gene is altered in two Ta alleles with a point mutation or a deletion. The gene is expressed in developing teeth and epidermis; no expression is seen in(More)
Anhidrotic ectodermal dysplasia (EDA) is an X-linked recessive disorder which affects ectodermal structures. A cDNA encoding a 135 amino acid protein with mutations in 5-10% of EDA patients has been reported. We have built up a complete splicing map of the EDA gene and characterized the longest and what most probably represents the full-length EDA(More)
Subcortical band heterotopia (SBH) and classical lissencephaly (LIS) result from deficient neuronal migration which causes mental retardation and epilepsy. A single LIS/SBH locus on Xq22.3-q24 was mapped by linkage analysis and physical mapping of the breakpoint in an X;2 translocation. A recently identified gene, doublecortin ( DCX ), is expressed in fetal(More)
Type 2A serine/threonine protein phosphatases (PP2A) have been implicated as important mediators of a diverse array of reversible protein phosphorylation events in plants. We have identified a novel Arabidopsis gene (AtB' delta) which encodes a 55-kDa B' type regulatory subunit of PP2A. The protein encoded by this gene is 57-63% identical and 69-74% similar(More)
A novel human gene, TRPC5, was cloned from the region of Xq23 that contains loci for nonsyndromic mental retardation (MRX47 and MRX35) and two genes, DCX and HPAK3, implicated in two X-linked disorders (LISX and MRX30). Within a single YAC, we have determined the order cen-HPAK3(5'-3')-DCX(3'-5')-DXS7012E-TRPC5(3'-5' )-ter. TRPC5 encodes a 974-residue novel(More)
The history and the lessons learned from hypohidrotic ectodermal dysplasia (HED) may serve as an example for the unraveling of the cause and pathogenesis of other ectodermal dysplasia syndromes by demonstrating that phenotypically identical syndromes (HED) can be caused by mutations in different genes (EDA, EDAR, EDARADD), that mutations in the same gene(More)
Mutations in the human ectodysplasin-A (EDA) are responsible for the most common form of the ectodermal dysplasia and the defective orthologous gene in mice produces the tabby phenotype, suggesting its vital role in the development of hair, sweat glands and teeth. Among several EDA splice isoforms, the most common and the longest EDA splice isoforms, EDA-A1(More)
We have indentified a novel gene (AtBβ) encoding a previously uncharacterized isoform of the B regulatory subunit of the type 2A serine/threonine protein phosphatase (PP2A) of Arabidopsis, and show that mRNA derived from the AtBβ gene accumulates in all Arabidopsis organs. In addition, we examined the expression of the three genes encoding the A regulatory(More)
Type 2A serine/threonine protein phosphatases (PP2A) are key components in the regulation of signal transduction and control of cell metabolism. The activity of these protein phosphatases is modulated by regulatory subunits. While PP2A activity has been characterized in plants, little is known about its regulation. We used the polymerase chain reaction to(More)
Mutations in the EDA gene cause anhidrotic ectodermal dysplasia (EDA), with lesions in skin appendage formation. To begin to analyze EDA pathways, we have used expression profiling on 15,000-gene mouse cDNA microarrays, comparing adult mouse skin from wild-type, EDA-defective (Tabby) mice, and Tabby mice supplemented with the EDA-A1 isoform, which is(More)
  • 1