Learn More
Field carcinogenesis detection represents a promising means for colorectal cancer (CRC) screening, although current techniques (e.g., flexible sigmoidoscopy) lack the requisite sensitivity. The novel optical technology low-coherence enhanced backscattering (LEBS) spectroscopy, allows identification of microscale architectural consequences of the field(More)
At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is(More)
BACKGROUND & AIMS We previously used a novel biomedical optics technology, 4-dimensional elastically scattered light fingerprinting, to show that in experimental colon carcinogenesis the predysplastic epithelial microvascular blood content is increased markedly. To assess the potential clinical translatability of this putative field effect marker, we(More)
There has been significant interest in developing depth-selective optical interrogation of biological tissue in general and of superficial (e.g., mucosal) tissue in particular. We report an in vivo polarization-gating fiber-optic probe that obtains backscattering spectroscopic measurements from a range of near-surface depths (100-200 microm). The design and(More)
Flexible sigmoidoscopy is a robust, clinically validated, and widely available colorectal cancer screening technique that is currently sanctioned by major guideline organizations. Given that endoscopic visualization is generally limited to the distal third of the colon and women tend to have a proclivity for proximal lesions, the flexible sigmoidoscopy(More)
PURPOSE Endoscopic examination has proven effective in both detecting and preventing colorectal cancer; however, only about a quarter of eligible patients undergo screening. Even if the compliance rate increased, limited endoscopic capacity and cost would be prohibitive. There is a need for an accurate method to target colonoscopy to those most at risk of(More)
Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about scattering phase function is preserved. Our group has shown the ability to measure the spatial backscattering impulse response function along with(More)
Polarization-gated spectroscopy is an established method to depth-selectively interrogate the structural properties of biological tissue. We employ this method in vivo in the azoxymethane (AOM)-treated rat model to monitor the morphological changes that occur in the field of a tumor during early carcinogenesis. The results demonstrate a statistically(More)
Spectroscopic techniques have demonstrated that in the microscopically normal mucosa, there is an increase in mucosal micro-circulation in patients harboring neoplasia elsewhere in the colon (i.e. marker of field carcinogenesis). However, the physiological and molecular basis of this early increase in blood supply (EIBS) has not been elucidated. We,(More)
Several biomedical applications, such as detection of dysplasia, require selective interrogation of superficial tissue structures less than a few hundred micrometers thick. Techniques and methods have been developed to limit the penetration depth of light in tissue, including the design of systems such as fiber-optic probes that have overlapping(More)