Andrew J. Davison

Learn More
We present a system for accurate real-time mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving low-cost depth camera and commodity graphics hardware. We fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface model of the observed scene in real-time. The current sensor(More)
We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free(More)
KinectFusion enables a user holding and moving a standard Kinect camera to rapidly create detailed 3D reconstructions of an indoor scene. Only the depth data from Kinect is used to track the 3D pose of the sensor and reconstruct, geometrically precise, 3D models of the physical scene in real-time. The capabilities of KinectFusion, as well as the novel(More)
DTAM is a system for real-time camera tracking and reconstruction which relies not on feature extraction but dense, every pixel methods. As a single hand-held RGB camera flies over a static scene, we estimate detailed textured depth maps at selected keyframes to produce a surface patchwork with millions of vertices. We use the hundreds of images available(More)
We present a new parametrization for point features within monocular simultaneous localization and mapping (SLAM) that permits efficient and accurate representation of uncertainty during undelayed initialization and beyond, all within the standard extended Kalman filter (EKF). The key concept is direct parametrization of the inverse depth of features(More)
Recent work has shown that the probabilistic SLAM approach of explicit uncertainty propagation can succeed in permitting repeatable 3D real-time localization and mapping even in the ‘pure vision’ domain of a single agile camera with no extra sensing. An issue which has caused difficulty in monocular SLAM however is the initialization of features, since(More)
We introduce the Imperial College London and National University of Ireland Maynooth (ICL-NUIM) dataset for the evaluation of visual odometry, 3D reconstruction and SLAM algorithms that typically use RGB-D data. We present a collection of handheld RGB-D camera sequences within synthetically generated environments. RGB-D sequences with perfect ground truth(More)
ÐAn active approach to sensing can provide the focused measurement capability over a wide field of view which allows correctly formulated Simultaneous Localization and Map-Building (SLAM) to be implemented with vision, permitting repeatable longterm localization using only naturally occurring, automatically-detected features. In this paper, we present the(More)
This paper presents a method for Simultaneous Localization and Mapping (SLAM), relying on a monocular camera as the only sensor, which is able to build outdoor, closed-loop maps much larger than previously achieved with such input. Our system, based on the Hierarchical Map approach [1], builds independent local maps in real-time using the EKF-SLAM technique(More)