Andrew J Darwin

Learn More
The phage-shock-protein (Psp) system responds to extracytoplasmic stress that may reduce the energy status of the cell. It is conserved in many different bacteria and has been linked to several important phenotypes. Escherichia coli psp mutants have defects in maintenance of the proton-motive force, protein export by the sec and tat pathways, survival in(More)
The expression of several Escherichia coli operons is activated by the Fnr protein during anaerobic growth and is further controlled in response to nitrate and nitrite by the homologous response regulators, NarL and NarP. Among these operons, the napF operon, encoding a periplasmic nitrate reductase, has unique features with respect to its Fnr-, NarL-, and(More)
The NarL and NarP proteins are homologous response regulators of Escherichia coli that control the expression of several operons in response to nitrate and nitrite. A consensus heptameric NarL DNA-binding sequence has been identified, and previous observations suggest that the NarP protein has a similar sequence specificity. However, some operons are(More)
The phage shock protein locus (pspFpspABCDE) of Escherichia coli has proved to be something of an enigma since its discovery. The physiological functions of the psp locus, including those of the predicted effector protein PspA, are unknown. In a previous genetic screen, we determined that a Yersinia enterocolitica pspC mutant was severely attenuated for(More)
During anaerobic growth, expression of the fdnGHI and narGHJI operons of Escherichia coli is induced by the NarL protein in response to nitrate. The fdnG operon control region contains four NarL-binding sites (termed NarL heptamers) between positions -70 and -130. The two central NarL heptamers of fdnG are arranged as an inverted repeat and are essential(More)
PspA, -B and -C regulate the bacterial phage shock protein stress response by controlling the PspF transcription factor. Here, we have developed complementary approaches to study the behaviour of these proteins at their endogenous levels in Yersinia enterocolitica. First, we observed GFP-tagged versions with an approach that resolves individual protein(More)
Pathogenic Yersinia species are associated with both localized and systemic infections in mammalian hosts. In this study, signature-tagged transposon mutagenesis was used to identify Yersinia enterocolitica genes required for survival in a mouse model of infection. Approximately 2000 transposon insertion mutants were screened for attenuation. This led to(More)
The formate dehydrogenases of Escherichia coli involved in electron transfer from formate to nitrite (Nrf activity: nitrite reduction by formate) have been identified. No previously undescribed selenoprotein was detected in bacteria grown under conditions optimal for the expression of Nrf activity. The Nrf activities of single mutants defective in either(More)
The bacterial phage shock protein (Psp) stress response system is activated by events affecting the cytoplasmic membrane. In response, Psp protein levels increase, including PspA, which has been implicated as the master effector of stress tolerance. Yersinia enterocolitica and related bacteria with a defective Psp system are highly sensitive to the(More)
The Yersinia enterocolitica phage-shock-protein (Psp) stress response system is activated by mislocalized outer-membrane secretin components of protein export systems and is essential for virulence. The cytoplasmic membrane proteins PspB and PspC were proposed to be dual function components of the system, acting both as positive regulators of psp gene(More)