Andrew J Boydston

Learn More
Polymers with advanced architectures can now be readily and reproducibly synthesized using controlled living polymerization. These materials are attractive as potential drug carriers due to their tunable size, versatile methods of drug incorporation and release, and ease of functionalization with targeting ligands. In this work, we report the design and(More)
Polymeric delivery vehicles can improve the safety and efficacy of chemotherapy drugs by facilitating preferential tumor delivery. Polymer-drug conjugates are especially attractive carriers because additional formulation steps are not required during manufacturing, and drug release profiles can be altered based on linker choice. For clinical translation,(More)
Biological systems rely on recyclable materials resources such as amino acids, carbohydrates and nucleic acids. When biomaterials are damaged as a result of aging or stress, tissues undergo repair by a depolymerization-repolymerization sequence of remodelling. Integration of this concept into synthetic materials systems may lead to devices with extended(More)
We describe studies in mechanochemical transduction that probe the activation of bonds orthogonal to an elongated polymer main chain. Compression of mechanophore-cross-linked materials resulted in the release of small molecules via cleavage of covalent bonds that were not integral components of the elongated polymer segments. The reactivity is proposed to(More)
We describe the preparation and characterization of photo- and mechanochromic 3D-printed structures using a commercial fused filament fabrication printer. Three spiropyran-containing poly(ε-caprolactone) (PCL) polymers were each filamentized and used to print single- and multicomponent tensile testing specimens that would be difficult, if not impossible, to(More)
A novel class of organometallic polymers comprising N-heterocyclic carbenes and transition metals was shown to have potential as an electrically conductive, self-healing material. These polymers were found to exhibit conductivities of the order of 10(-3) S cm-1 and showed structurally dynamic characteristics in the solid-state. Thin films of these materials(More)
A series of benzobis(imidazolium) (BBI) salts has been prepared and studied as a new class of versatile fluorescent materials. Using a high yielding, modular synthetic strategy, BBI salts with a range of functionality poised for investigating fundamental and applications-oriented characteristics, including emission wavelength tunability, solvatochromism,(More)
A new series of highly photoluminescent benzobis(imidazolium) salts with tunable electronic and physical properties is described. Systematic structural manipulations provided a set of materials that were not only fluorescent in the condensed state but also displayed tunable glass transition temperatures ranging from -0.3 to 113 degrees C. Upon heating,(More)
We have developed a mechanochemically responsive material capable of successively releasing small organic molecules from a cross-linked network upon repeated compressions. The use of a flex activated mechanophore that does not lead to main chain scission and an elastomeric polyurethane enabled consecutive compressions with incremental increases in the %(More)
A method for the catalytic formation of electroauxiliaries and subsequent anodic oxidation has been developed. The process interfaces N-heterocyclic carbene-based organocatalysis with electro-organic synthesis to achieve direct oxidation of catalytically generated electroactive intermediates. We demonstrate the applicability of this method as a one-pot(More)