Learn More
Gelatinous fibers (G-fibers) are the active component of tension wood. G-fibers are unlike traditional fiber cells in that they possess a thick, nonlignified gelatinous layer (G-layer) internal to the normal secondary cell wall layers. For the past several decades, the G-layer has generally been presumed to be composed nearly entirely of crystalline(More)
The ARP2/3 complex, a highly conserved nucleator of F-actin polymerization, and its activator, the SCAR complex, have been shown to play important roles in leaf epidermal cell morphogenesis in Arabidopsis. However, the intracellular site(s) and function(s) of SCAR and ARP2/3 complex-dependent actin polymerization in plant cells remain unclear. We(More)
Although the coiling of tendrils and the twining of vines has been investigated since Darwin's time, a full understanding of the mechanism(s) of this coiling and twining ability has not yet been obtained. In a previous study (Planta 225: 485-498), gelatinous (G) fibers in tendrils of redvine occurred concomitantly with the ability to coil, strongly(More)
PREMISE OF STUDY Abscission zones (AZ) are sites where leaves and other organs are shed. Investigating the AZ by classical biochemical techniques is difficult due to its small size and because the surrounding tissue is not involved in abscission. The goals of this study were to determine whether AZ cell walls are chemically unique from the other cells of(More)
The cytoplasmic domain of the rosette terminal complex has been imaged in situ in patches of plasma membrane isolated from tobacco BY-2 protoplasts. By partially extracting the plasma membrane lipids, cellulose microfibrils were observed through the plasma membrane. Rosette terminal complexes were identified on the basis of their association with the ends(More)
PREMISE Although many highly successful weed species use a ballistic seed dispersal mechanism, little is known about the mechanics of this process. Bittercress (Cardamine hirsuta) siliques are morphologically similar to Arabidopsis siliques, but they can project their seeds up to 5 m, while Arabidopsis seeds are dispersed by gravity. Comparison of these(More)
The tendrils of Virginia creeper (Parthenocissus quinquefolia) do not coil around their supports. Rather, they adhere to supporting objects by flattening against the support surface and secreting an adhesive compound which firmly glues the tendril to the support. In this study, microscopic and immunocytochemical techniques were utilized to determine the(More)
The cotton fiber is a model system to study cell wall biosynthesis because the fiber cell elongates (∼3 cm in ∼20 days) without mitosis. In this study, developing cotton ovules, examined from 1 day before anthesis (DBA) to 2 days post-anthesis (DPA), that would be difficult to investigate via classical carbohydrate biochemistry were probed using a battery(More)
London Resin (LR) White is a commonly used resin for embedding specimens to be used for immuno- and/or cytochemical studies. In some instances, due to either the properties of the specimen or the availability of various reagents and equipment, it becomes necessary and/or more convenient to polymerize LR White using heat rather than chemical accelerators or(More)
Most land plants have ill-defined microtubule-organizing centers (MTOCs), consisting of sites on the nuclear envelope or even along microtubules (MTs). In contrast, the spermatogenous cells of the pteridophyte Ceratopteris richardii have a well-defined MTOC, the blepharoplast, which organizes MTs through the last two division cycles. This allows a rare(More)