Learn More
Significant opioid-dependent changes occur during the fourth postnatal week in supraspinal sites (rostroventral medulla [RVM], periaqueductal grey [PAG]) that are involved in the descending control of spinal excitability via the dorsal horn (DH). Here we report developmentally regulated changes in the opioidergic signalling within the PAG and DH, which(More)
We describe the application of a performance engineering methodology based on UML (unified modelling language) diagrams with annotations taken from the profile for schedulability, performance and time. The methodology targets the early stages of the development process and works exclusively with system scenarios. These scenarios are mechanically translated(More)
BACKGROUND AND PURPOSE The cannabinoid receptor-mediated analgesic effects of 2-arachidonoylglycerol (2-AG) are limited by monoacylglycerol lipase (MAGL). 4-nitrophenyl 4-[bis (1,3-benzodioxol-5-yl) (hydroxy) methyl] piperidine-1-carboxylate (JZL184) is a potent inhibitor of MAGL in the mouse, though potency is reportedly reduced in the rat. Here we have(More)
We present a performance engineering methodology based upon the construction and solution of performance models generated mechanically from UML sequence diagrams, annotated using the UML Profile for Schedulability, Performance and Time (SPT). The target platform for the performance analysis is the Labelled Transition System Analyser (LTSA) tool which(More)
The antinociceptive effects of the endocannabinoids (ECs) are enhanced by inhibiting catabolic enzymes such as fatty acid amide hydrolase (FAAH). The physiological relevance of the metabolism of ECs by other pathways, such as cyclooxygenase-2 (COX2) is less clear. To address this question we compared the effects of local inhibition of FAAH versus COX2(More)
OBJECTIVE To investigate the impact of an experimental model of osteoarthritis (OA) on spinal nociceptive processing and the role of the inhibitory endocannabinoid system in regulating sensory processing at the spinal level. METHODS Experimental OA was induced in rats by intraarticular injection of sodium mono-iodoacetate (MIA), and the development of(More)
BACKGROUND Clinical studies of osteoarthritis (OA) suggest central sensitization may contribute to the chronic pain experienced. This preclinical study used the monosodium iodoacetate (MIA) model of OA joint pain to investigate the potential contribution of spinal sensitization, in particular spinal glial cell activation, to pain behaviour in this model.(More)
We have shown that the major active agent of Cannabis sativa, Delta(9)-tetrahydrocannabinol, activates peroxisome proliferator-activated receptor gamma [PPARgamma, O'Sullivan, S.E., Tarling, E.J., Bennett, A.J., Kendall, D.A., Randall, M.D., 2005c. Novel time-dependent vascular actions of delta9-tetrahydrocannabinol mediated by peroxisome(More)
BACKGROUND AND PURPOSE Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if(More)
OBJECTIVES Nerve growth factor (NGF) is a promising analgesic target, particularly in osteoarthritis (OA) where existing therapies are inadequate. We hypothesised that pain responses to NGF are increased in OA joints. Here, NGF-evoked pain behaviour was compared in two rodent models of OA, and possible mechanisms underlying altered pain responses were(More)