Learn More
How do stimuli in the environment interact with the goals of observers? We addressed this question by showing that the relevance of an abruptly appearing visual object (cue) changes how observers orient attention toward a subsequent object (target) and how this target is represented in the activity of neurons in the superior colliculus. Initially after the(More)
Increasing evidence suggests that the neural processes associated with identifying everyday stimuli include the classification of those stimuli into a limited number of semantic categories. How the neural representations of these stimuli are organized in the temporal lobe remains under debate. Here we used functional magnetic resonance imaging (fMRI) to(More)
Reflexively orienting toward a peripheral cue can influence subsequent responses to a target, depending on when and where the cue and target appear relative to each other. At short delays between the cue and target [cue-target onset asynchrony (CTOA)], subjects are faster to respond when they appear at the same location, an effect referred to as reflexive(More)
The ability to perceive and differentiate facial expressions is vital for social communication. Numerous functional MRI (fMRI) studies in humans have shown enhanced responses to faces with different emotional valence, in both the amygdala and the visual cortex. However, relatively few studies have examined how valence influences neural responses in monkeys,(More)
Functional magnetic resonance imaging (fMRI) has been used extensively to identify regions in the inferior temporal (IT) cortex that are selective for categories of visual stimuli. However, comparatively little is known about the neuronal responses relative to these fMRI-defined regions. Here, we compared in nonhuman primates the distribution and response(More)
Power spectral analysis (PSA) of the EEG was studied in healthy term and preterm neonates to establish the normal range with gestational age. Sixty healthy newborn infants from 26 to 41 weeks' gestation had PSA performed at 3 days of age. Five main frequency bands were studied: delta 1 (1 Hz or less), delta 2 (2-3 Hz), theta, alpha, and beta. A significant(More)
Performance in a behavioural task can be influenced by both bottom-up and top-down processes such as stimulus modality and prior probability. Here, we exploited differences in behavioural strategy to explore the role of the intermediate and deep layers of the superior colliculus (dSC) in covert orienting. Two monkeys were trained on a predictive(More)
OBJECTIVES To describe the development of a facial expression tool differentiating pain-free cats from those in acute pain. METHODS Observers shown facial images from painful and pain-free cats were asked to identify if they were in pain or not. From facial images, anatomical landmarks were identified and distances between these were mapped. Selected(More)
Saccades to combined audiovisual stimuli often have reduced saccadic reaction times (SRTs) compared with those to unimodal stimuli. Neurons in the intermediate/deep layers of the superior colliculus (dSC) are capable of integrating converging sensory inputs to influence the time to saccade initiation. To identify how neural processing in the dSC contributes(More)
Multisensory integration is a process whereby information converges from different sensory modalities to produce a response that is different from that elicited by the individual modalities presented alone. A neural basis for multisensory integration has been identified within a variety of brain regions, but the most thoroughly examined model has been that(More)