#### Filter Results:

- Full text PDF available (295)

#### Publication Year

1988

2017

- This year (29)
- Last 5 years (114)
- Last 10 years (188)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Brain Region

#### Data Set Used

#### Key Phrases

#### Method

#### Organism

Learn More

- Andrew Gelman
- 2006

Bayesian data analysis includes but is not limited to Bayesian inference (Gelman et al., 2003; Kerman, 2006a). Here, we take Bayesian inference to refer to posterior inference (typically, the simulation of random draws from the posterior distribution) given a fixed model and data. Bayesian data analysis takes Bayesian inference as a starting point but also… (More)

The Gibbs sampler, the algorithm of Metropolis and similar iterative simulation methods are potentially very helpful for summarizing multivariate distributions. Used naively, however, iterative simulation can give misleading answers. Our methods are simple and generally applicable to the output of any iterative simulation; they are designed for researchers… (More)

Consider an educational study with data from students in many schools, predicting in each school the students’ grades y on a standardized test given their scores on a pre-test x and other information. A separate regression model can be fit within each school, and the parameters from these schools can themselves be modeled as depending on school… (More)

Markov chain Monte Carlo (MCMC) methods make possible the use of flexible Bayesian models that would otherwise be computationally infeasible. In recent years, a great variety of such applications have been described in the literature. Applied statisticians who are new to these methods may have several questions and concerns, however: How much effort and… (More)

Various noninformative prior distributions have been suggested for scale parameters in hierarchical models. We construct a new folded-noncentral-t family of conditionally conjugate priors for hierarchical standard deviation parameters, and then consider noninformative and weakly informative priors in this family. We use an example to illustrate serious… (More)

- Stephen P. Brooks, Andrew Gelman, Stephen P. BROOKSand, Andrew Gelman
- 1998

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in… (More)

This paper considers Bayesian counterparts of the classical tests for goodness of fit and their use in judging the fit of a single Bayesian model to the observed data. We focus on posterior predictive assessment, in a framework that also includes conditioning on auxiliary statistics. The Bayesian formulation facilitates the construction and calculation of a… (More)

- Matthew D. Hoffman, Andrew Gelman
- Journal of Machine Learning Research
- 2014

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior and sensitivity to correlated parameters that plague many MCMC methods by taking a series of steps informed by first-order gradient information. These features allow it to converge to high-dimensional target distributions much more quickly than… (More)

Computing (ratios of) normalizing constants of probability models is a fundamental computational problem for many statistical and scientific studies. Monte Carlo simulation is an effective technique, especially with complex and high-dimensional models. This paper aims to bring to the attention of general statistical audiences of some effective methods… (More)

We propose a new prior distribution for classical (non-hierarchical) logistic regression models, constructed by first scaling all nonbinary variables to have mean 0 and standard deviation 0.5, and then placing independent Student-t prior distributions on the coefficients. As a default choice, we recommend the Cauchy distribution with center 0 and scale 2.5,… (More)