Andrew G. Stephen

Learn More
The identification of small molecules that inhibit the sequence-specific binding of transcription factors to DNA is an attractive approach for regulation of gene expression. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that controls genes involved in glycolysis, angiogenesis, migration, and invasion, all of which are important for tumor(More)
Vaults are large cytoplasmic ribonucleoprotein complexes of undetermined function. Mammalian vaults have two high molecular mass proteins of 193 and 240 kDa. We have identified a partial cDNA encoding the 240-kDa vault protein and determined it is identical to the mammalian telomerase-associated component, TEP1. TEP1 is the mammalian homolog of the(More)
Ras proteins play a major role in human cancers but have not yielded to therapeutic attack. Ras-driven cancers are among the most difficult to treat and often excluded from therapies. The Ras proteins have been termed "undruggable," based on failures from an era in which understanding of signaling transduction, feedback loops, redundancy, tumor(More)
Infection of domestic cats with feline immunodeficiency virus (FIV) is an important model system for studying human immunodeficiency virus type 1 (HIV-1) infection due to numerous similarities in pathogenesis induced by these two lentiviruses. However, many molecular aspects of FIV replication remain poorly understood. It is well established that(More)
We have developed a high-throughput fluorescence anisotropy screen, using a 384-well format, to identify small molecules that disrupt the DNA binding of B-ZIP proteins. Binding of a B-ZIP dimer to fluorescently labeled DNA can be monitored by fluorescence anisotropy. We screened the National Cancer Institute diversity set of 1990 compounds to identify small(More)
The ubiquitin-activating enzyme E1 catalyzes the first step in the ubiquitin conjugation pathway. Previously, we have cloned and sequenced the cDNA for human E1. Expression of the E1 cDNA in the ts20 cell line, which harbors a thermolabile E1, abrogated the phenotypic defects associated with this line. However, little is known of the cell biology of the E1(More)
Retroviral Gag proteins encode small peptide motifs known as late domains that promote the release of virions from infected cells by interacting directly with host cell factors. Three types of retroviral late domains, with core sequences P(T/S)AP, YPX(n)L, and PPPY, have been identified. HIV-1 encodes a primary P(T/S)AP-type late domain and an apparently(More)
Individual protein binding sites on DNA can be measured in bits of information. This information is related to the free energy of binding by the second law of thermodynamics, but binding kinetics appear to be inaccessible from sequence information since the relative contributions of the on- and off-rates to the binding constant, and hence the free energy,(More)
Vault RNA (vRNA) genes have been cloned from several vertebrates including rat, mouse, and humans. Their copy numbers vary, as does the length of the encoded RNA. We have determined that the mouse genome contains two vRNA genes; one is expressed the other is a pseudogene. In vitro transcription of the rat vRNA gene by RNA polymerase III has previously been(More)
The ubiquitin-activating enzyme E1 exists as two isoforms, E1a (117 kDa) and E1b (110 kDa). E1a is phosphorylated, whereas E1b is not. In the present study we have demonstrated the cell cycle dependence of E1a phosphorylation: a 2-fold increase in the specific phosphorylation of E1a in G2 compared with the basal level of phosphorylation in the other stages(More)