Learn More
Human nerve fibers exhibit a distinct pattern of threshold fluctuation following a single action potential known as the recovery cycle. We developed geometrically and electrically accurate models of mammalian motor nerve fibers to gain insight into the biophysical mechanisms that underlie the changes in axonal excitability and regulate the recovery cycle.(More)
Calcium imaging is a versatile experimental approach capable of resolving single neurons with single-cell spatial resolution in the brain. Electrophysiological recordings provide high temporal, but limited spatial resolution, because of the geometrical inaccessibility of the brain. An approach that integrates the advantages of both techniques could provide(More)
The Neurochip-2 is a second generation, battery-powered device for neural recording and stimulating that is small enough to be carried in a chamber on a monkey's head. It has three recording channels, with user-adjustable gains, filters, and sampling rates, that can be optimized for recording single unit activity, local field potentials,(More)
The National Institute on Aging (NIA) sponsored a workshop on September, 1999 to discuss the feasibility of establishing a program to evaluate potential intervention strategies to decelerate the rate of aging in mammals. The ultimate goal is to identify promising interventions in animals that might lead to clinical trials in humans. The participants(More)
We present a 6.4 &#x00B5;W electrocorticography (ECoG)/electroencephalography (EEG) processing integrated circuit (EPIC) with 0.4 &#x00B5;V<inf>rms</inf> noise floor intended for emerging brain-computer interface (BCI) applications. This chip conditions the signal and simultaneously extracts energy in four fully-programmable frequency bands. Functionality(More)
Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout(More)
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular,(More)
In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the(More)
INTRODUCTION Incidental findings during ultrasound examinations occur frequently with live models in training sessions. Because of the broad scope of training sessions available, the ethics and guidelines of dealing with incidental findings in live models need to be discussed. METHODS We provide a case of an endovaginal ultrasound that had significant(More)