Andrew G. Richardson

Learn More
Human nerve fibers exhibit a distinct pattern of threshold fluctuation following a single action potential known as the recovery cycle. We developed geometrically and electrically accurate models of mammalian motor nerve fibers to gain insight into the biophysical mechanisms that underlie the changes in axonal excitability and regulate the recovery cycle.(More)
Calcium imaging is a versatile experimental approach capable of resolving single neurons with single-cell spatial resolution in the brain. Electrophysiological recordings provide high temporal, but limited spatial resolution, because of the geometrical inaccessibility of the brain. An approach that integrates the advantages of both techniques could provide(More)
The Neurochip-2 is a second generation, battery-powered device for neural recording and stimulating that is small enough to be carried in a chamber on a monkey's head. It has three recording channels, with user-adjustable gains, filters, and sampling rates, that can be optimized for recording single unit activity, local field potentials,(More)
We present a 6.4 &#x00B5;W electrocorticography (ECoG)/electroencephalography (EEG) processing integrated circuit (EPIC) with 0.4 &#x00B5;V<inf>rms</inf> noise floor intended for emerging brain-computer interface (BCI) applications. This chip conditions the signal and simultaneously extracts energy in four fully-programmable frequency bands. Functionality(More)
Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout(More)
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular,(More)
In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the(More)
Grip force control involves mechanisms to adjust to unpredictable and predictable changes in loads during manual manipulation. Somatosensory feedback is critical not just to reactive, feedback control but also to updating the internal representations needed for proactive, feedforward control. The role of primary somatosensory cortex (S1) in these control(More)
Efficient spike acquisition techniques are needed to bridge the divide from creating large multielectrode arrays (MEA) to achieving whole-cortex electrophysiology. In this paper, we introduce generalized analog thresholding (gAT), which achieves millisecond temporal resolution with sampling rates as low as 10 Hz. Consider the torrent of data from a single(More)