Learn More
UNLABELLED Assays of human postmortem brain tissue have revealed that smokers have greater densities of high-affinity nicotinic acetylcholine receptors (nAChRs) in several brain regions than do nonsmokers or exsmokers. Quantitative PET imaging of nAChRs in humans has recently been reported using the alpha4beta2* subtype-specific radioligand 2-(18)F-FA-85380(More)
PURPOSE Using the α7-nAChR radiotracer, [(18)F]ASEM, we present the first successful human positron emission tomography (PET) studies. Rodent occupancy with three clinically employed α7-nAChR drugs confirms the specificity of the radiotracer. PROCEDURES Five healthy male subjects were imaged for 90 min following IV [(18)F]ASEM. Two subjects were scanned(More)
UNLABELLED Nicotinic acetylcholine receptors (nAChRs) have been implicated in a variety of central processes, such as learning and memory and analgesia. These receptors also mediate the reinforcing properties of nicotine in tobacco products and are increased in postmortem samples of brains of smokers. On the other hand, brains of individuals who have died(More)
In Alzheimer's disease (AD), one of the early responses to Aβ amyloidosis is recruitment of microglia to areas of new plaque. Microglial receptors such as cannabinoid receptor 2 (CB2) might be a suitable target for development of PET radiotracers that could serve as imaging biomarkers of Aβ-induced neuroinflammation. Mouse models of amyloidosis(More)
Recently, A-836339 [2,2,3,3-tetramethylcyclopropanecarboxylic acid [3-(2-methoxyethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]amide] (1) was reported to be a selective CB2 agonist with high binding affinity. Here we describe the radiosynthesis of [11C]A-836339 ([11C]1) via its desmethyl precursor as a candidate radioligand for imaging CB2 receptors with(More)
UNLABELLED The development of the radioligands for PET imaging of the cerebral cannabinoid receptor (CB1) is of great importance for studying its role in neuropsychiatric disorders, obesity, and drug dependence. None of the currently available radioligands for CB1 are suitable for quantitative PET, primarily because of their insufficient binding potential(More)
UNLABELLED The α7-nicotinic cholinergic receptor (α7-nAChR) is a key mediator of brain communication and has been implicated in a wide variety of central nervous system disorders. None of the currently available PET radioligands for α7-nAChR are suitable for quantitative PET imaging, mostly because of insufficient specific binding. The goal of this study(More)
To advance understanding of the neurochemical changes in Parkinson's disease (PD), we compared D2-like dopamine receptor occupancy by dopamine in the control and lesioned putamen of four pig-tailed macaques treated unilaterally with MPTP. PET and in vitro binding techniques were used to measure binding potential (BP(*)) and density of D2-like dopamine(More)
Reportedly, 2-[(18)F]fluoro-A-85380, 1, a promising radiotracer for imaging the nicotinic acetylcholine receptor (nAChR) by positron emission tomography (PET) in humans, exhibits slow penetration through the blood-brain barrier (BBB) due to its low lipophilicity. A ligand for nAChRs with greater lipophilicity than that of 1 would be potentially more(More)
Gallium-68 is a generator-produced radionuclide for positron emission tomography (PET) that is being increasingly used for radiolabeling of tumor-targeting peptides. Compounds [(68)Ga]3 and [(68)Ga]6 are high-affinity urea-based inhibitors of the prostate-specific membrane antigen (PSMA) that were synthesized in decay-uncorrected yields ranging from 60% to(More)