Andrew G Cole

Learn More
In a high-throughput screen of four million compounds from combinatorial libraries for small-molecule modulators of the chemokine receptor CXCR3, two classes of receptor agonists, based on tetrahydroisoquinoline and piperidinyl diazepanone templates, were identified. Several of these compounds stimulated calcium flux in HEK293 cells expressing the(More)
We identified a series of structurally novel SCD (Delta9 desaturase) inhibitors via high-throughput screening and follow-up SAR studies. Modification of the central bicyclic scaffold has proven key to our potency optimization effort. The most potent analog (8g) had IC(50) value of 50 pM in a HEPG2 SCD assay and has been shown to be metabolically stable and(More)
The discovery and synthesis of a series of 2-amino-5-benzoyl-4-(2-furyl)thiazoles as adenosine A(2A) receptor antagonists from a small-molecule combinatorial library using a high-throughput radioligand-binding assay is described. Antagonists were further characterized in the A(2A) binding assay and an A(1) selectivity assay. Selected examples exhibited(More)
A series of trisubstituted purinones was synthesized and evaluated as A(2A) receptor antagonists. The A(2A) structure-activity relationships at the three substituted positions were studied and selectivity against the A(1) receptor was investigated. One antagonist 12o exhibits a K(i) of 9nM in an A(2A) binding assay, a K(b) of 18nM in an A(2A) cAMP(More)
A novel series of adenosine A(2A) receptor antagonists was identified by high-throughput screening of an encoded combinatorial compound collection. The initial hits were optimized for A(2A) binding affinity, A(1) selectivity, and in vitro microsomal stability generating orally available 2-aminoimidazo[4,5-b]pyridine-based A(2A) antagonist leads.
BACKGROUND AND PURPOSE The chemokine receptor CXCR3 directs migration of T-cells in response to the ligands CXCL9/Mig, CXCL10/IP-10 and CXCL11/I-TAC. Both ligands and receptors are implicated in the pathogenesis of inflammatory disorders, including atherosclerosis and rheumatoid arthritis. Here, we describe the molecular mechanism by which two synthetic(More)
In this Letter we describe the optimization of an aminopurine lead (1) with modest potency and poor overall kinase selectivity which led to the identification of a series of potent, selective JNK inhibitors. Improvement in kinase selectivity was enabled by introduction of an aliphatic side chain at the C-2 position. CC-359 (2) was selected as a potential(More)
A novel class of Janus tyrosine kinase 3 (JAK3) inhibitors based on a 2-benzimidazoylpurinone core structure is described. Through substitution of the benzimidazoyl moiety and optimization of the N-9 substituent of the purinone, compound 24 was identified incorporating a chroman-based functional group. Compound 24 shows excellent kinase activity, good oral(More)
OBJECTIVE All gamma-chain cytokines signal through JAK-3 and JAK-1 acting in tandem. We undertook this study to determine whether the JAK-3 selective inhibitor WYE-151650 would be sufficient to disrupt cytokine signaling and to ameliorate autoimmune disease pathology without inhibiting other pathways mediated by JAK-1, JAK-2, and Tyk-2. METHODS JAK-3(More)
The discovery and evaluation of 5-(4-phenylbenzyl)oxazole-4-carboxamides as prostacyclin (IP) receptor antagonists is described. Analogs disclosed showed high affinity for the IP receptor in human platelet membranes with IC50 values of 0.05-0.50 microM, demonstrated functional antagonism by inhibiting cAMP production in HEL cells with IC50 values of(More)