Learn More
Many adaptive neural network theories are based on neuronlike adaptive elements that can behave as single unit analogs of associative conditioning. In this article we develop a similar adaptive element, but one which is more closely in accord with the facts of animal learning theory than elements commonly studied in adaptive network research. We suggest(More)
Reinforcement learning is bedeviled by the curse of dimensionality: the number of parameters to be learned grows exponentially with the size of any compact encoding of a state. Recent attempts to combat the curse of dimensionality have turned to principled ways of exploiting temporal abstraction, where decisions are not required at each step, but rather(More)
One of the most active areas of research in artificial intelligence is the study of learning methods by which " embedded agents " can improve performance while acting in complex dynamic environments. An agent, or decision maker, is embedded in an environment when it receives information from, and acts on, that environment in an ongoing closed-loop(More)
We introduce two new temporal diffence (TD) algorithms based on the theory of linear least-squares function approximation. We define an algorithm we call Least-Squares TD (LS TD) for which we prove probability-one convergence when it is used with a function approximator linear in the adjustable parameters. We then define a recursive version of this(More)
Psychologists call behavior intrinsically motivated when it is engaged in for its own sake rather than as a step toward solving a specific problem of clear practical value. But what we learn during intrinsically motivated behavior is essential for our development as competent autonomous entities able to efficiently solve a wide range of practical problems(More)
for helping to clarify the relationships between heuristic search and control. We thank Rich Sutton, Chris Watkins, Paul Werbos, and Ron Williams for sharing their fundamental insights into this subject through numerous discussions , and we further thank Rich Sutton for rst making us aware of Korf's research and for his very thoughtful comments on the(More)
Increasingly many wireless sensor network deployments are using harvested environmental energy to extend system lifetime. Because the temporal profiles of such energy sources exhibit great variability due to dynamic weather patterns, an important problem is designing an adaptive duty-cycling mechanism that allows sensor nodes to maintain their power supply(More)