Learn More
This protocol describes the steps needed to perform quantitative statistical colocalization on two-color confocal images, specifically of plant cells. The procedure includes a calibration test to check the chromatic alignment of the confocal microscope. A software tool is provided to calculate the Pearson and Spearman correlation coefficients(More)
Root elongation and bending require the coordinated expansion of multiple cells of different types. These processes are regulated by the action of hormones that can target distinct cell layers. We use a mathematical model to characterise the influence of the biomechanical properties of individual cell walls on the properties of the whole tissue. Taking a(More)
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin.(More)
In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell-wall(More)
The ability to quantify the geometry of plant organs at the cellular scale can provide novel insights into their structural organization. Hitherto manual methods of measurement provide only very low throughput and subjective solutions, and often quantitative measurements are neglected in favour of a simple cell count. We present a tool to count and measure(More)
Image-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape characteristics, the presence of occlusions and variability in(More)
Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are(More)
Distributed platforms are now a de facto standard in modern software and application development. Although the ACM/IEEE Curriculum 2013 introduces Parallel and Distributed Computing as a first class knowledge area for the first time, the right level of abstraction to teach these concepts is still an important question that needs to be explored. This work(More)
The emerging discipline of plant phenomics aims to measure key plant characteristics, or traits, though as yet the set of plant traits that should be measured by automated systems is not well defined. Methods capable of recovering generic representations of the 3D structure of plant shoots from images would provide a key technology underpinning(More)
Deep learning is an emerging field that promises unparalleled results on many data analysis problems. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping, and demonstrate state-of-the-art results for root and shoot feature identification and localisation. We predict a paradigm shift in(More)