Learn More
Binding of interferons IFN-alpha and IFN-gamma to their cell surface receptors promptly induces tyrosine phosphorylation of latent cytoplasmic transcriptional activators (or Stat proteins, for signal transducers and activators of transcription). Interferon-alpha activates both Stat91 (M(r) 91,000; ref. 1) and Stat113 (M(r) 113,000; ref. 2) whereas IFN-gamma(More)
Transcription factors of the STAT family are required for cellular responses to multiple signaling molecules. After ligand binding-induced activation of cognate receptors, STAT proteins are phosphorylated, hetero- or homodimerize, and translocate to the nucleus. Subsequent STAT binding to specific DNA elements in the promoters of signal-responsive genes(More)
To gain a better understanding of the role of DCC and Neogenin in neural and nonneural tissues during vertebrate development we have carried out in situ hybridization studies to determine their expression patterns throughout the mid to late stages of mouse embryogenesis. This analysis revealed striking contrasts in both the spatial and temporal expression(More)
Interleukin-6 (IL-6), leukemia inhibitory factor, oncostatin M, interleukin-11, and ciliary neurotrophic factor bind to receptor complexes that share the signal transducer gp130. Upon binding, the ligands rapidly activate DNA binding of acute-phase response factor (APRF), a protein antigenically related to the p91 subunit of the interferon-stimulated gene(More)
JAK2, a member of the Janus kinase (JAK) family of protein tyrosine kinases (PTKs), is an important intracellular mediator of cytokine signaling. Mutations of the JAK2 gene are associated with hematologic cancers, and aberrant JAK activity is also associated with a number of immune diseases, including rheumatoid arthritis. Accordingly, the development of(More)
In the Drosophila embryo, a subset of muscles require expression and function of the RYK subfamily RTK gene derailed (drl) for correct attachment. We have isolated a second RYK homolog, doughnut (dnt), from Drosophila. The DNT protein exhibits 60% amino acid identity to DRL, and is structurally as similar to the mammalian RYK proteins as is DRL, indicating(More)
CSF-1 regulates macrophage differentiation, survival, and function, and is an attractive therapeutic target for chronic inflammation and malignant diseases. Here we describe the effects of a potent and selective inhibitor of CSF-1R-CYC10268-on CSF-1R-dependent signaling. In in vitro kinase assays, CYC10268 was active in the low nanomolar range and showed(More)
M-CSF/CSF-1 supports the proliferation and differentiation of monocytes and macrophages. In mice, CSF-1 also promotes proinflammatory responses in vivo by regulating mature macrophage functions, but little is known about the acute effects of this growth factor on mature human macrophages. Here, we show that in contrast to its effects on mouse bone(More)
A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards(More)
The orally active microtubule-disrupting agent (S)-1-ethyl-3-(2-methoxy-4-(5-methyl-4-((1-(pyridin-3-yl)butyl)amino)pyrimidin-2-yl)phenyl)urea (CYT997), reported previously by us (Bioorg Med Chem Lett 19:4639-4642, 2009; Mol Cancer Ther 8:3036-3045, 2009), is potently cytotoxic to a variety of cancer cell lines in vitro and shows antitumor activity in vivo.(More)