Learn More
Conservation biologists, evolutionary ecologists and agricultural biologists require an improved understanding of how pollinators utilize space and share resources. Using microsatellite markers, we conducted a genetic analysis of space use and resource sharing at several spatial scales among workers of two ecologically dissimilar bumble bee species (Bombus(More)
We investigated the fine genetic structure of colonies of the ant, Leptothorax acervorum, to examine how queens share parentage (skew) in a social insect with multiple queens (polygyny). Overall, 494 individuals from eight polygynous field colonies were typed at up to seven microsatellite loci each. The first main finding was that surprisingly many sexual(More)
The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species.(More)
Kin selection theory predicts that social insects should perform selfish manipulations as a function of colony genetic structure. We describe a novel mechanism by which this occurs. First, we use microsatellite analyses to show that, in a population of the ant Leptothorax acervorum, workers' relatedness asymmetry (ratio of relatedness to females and(More)
Kin selection theory predicts that, in social Hymenoptera, the parentage of males should be determined by within-colony relatedness. We present a model showing that, when sex ratios are split (bimodal) as a function of colony kin structure, the predictions of kin selection theory regarding the occurrence of worker reproduction and policing (prevention of(More)
The evolution of extreme cooperation, as found in eusocial insects (those with a worker caste), is potentially undermined by selfish reproduction among group members. In some eusocial Hymenoptera (ants, bees and wasps), workers can produce male offspring from unfertilized eggs. Kin selection theory predicts levels of worker reproduction as a function of the(More)
Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection)(More)
Multiple mating by queens (polyandry) and the occurrence of multiple queens in the same colony (polygyny) alter patterns of relatedness within societies of eusocial insects. This is predicted to influence kin-selected conflicts over reproduction. We investigated the mating system of a facultatively polygynous UK population of the ant Leptothorax acervorum(More)
Although central to understanding life-history evolution, the relationship between lifetime reproductive success and longevity remains uncertain in many organisms. In social insects, no studies have reported estimates of queens' lifetime reproductive success and longevity within populations, despite the importance of understanding how sociality and(More)
Kin selection theory predicts conflict in social Hymenoptera between the queen and workers over male parentage because each party is more closely related to its own male offspring. Some aspects of the reproductive biology of the bumble-bee Bombus terrestris support kin selection theory but others arguably do not. We present a novel hypothesis for how(More)