Learn More
Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser(More)
Protein and messenger RNA (mRNA) copy numbers vary from cell to cell in isogenic bacterial populations. However, these molecules often exist in low copy numbers and are difficult to detect in single cells. We carried out quantitative system-wide analyses of protein and mRNA expression in individual cells with single-molecule sensitivity using a newly(More)
BACKGROUND Gene-set enrichment analysis is a useful technique to help functionally characterize large gene lists, such as the results of gene expression experiments. This technique finds functionally coherent gene-sets, such as pathways, that are statistically over-represented in a given gene list. Ideally, the number of resulting sets is smaller than the(More)
We have developed an approach using Bayesian networks to predict protein-protein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNAcoexpression, coessentiality, and colocalization). In addition to de novo predictions, it can(More)
The yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes(More)
Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional(More)
Set2 methylates Lys36 of histone H3. We show here that yeast Set2 copurifies with RNA polymerase II (RNAPII). Chromatin immunoprecipitation analyses demonstrated that Set2 and histone H3 Lys36 methylation are associated with the coding regions of several genes that were tested and correlate with active transcription. Both depend, as well, on the Paf1(More)
Proteins often function as components of multi-subunit complexes. Despite its long history as a model organism, no large-scale analysis of protein complexes in Escherichia coli has yet been reported. To this end, we have targeted DNA cassettes into the E. coli chromosome to create carboxy-terminal, affinity-tagged alleles of 1,000 open reading frames(More)
To physically characterize the web of interactions connecting the Saccharomyces cerevisiae proteins suspected to be RNA polymerase II (RNAPII) elongation factors, subunits of Spt4/Spt5 and Spt16/Pob3 (corresponding to human DSIF and FACT), Spt6, TFIIF (Tfg1, -2, and -3), TFIIS, Rtf1, and Elongator (Elp1, -2, -3, -4, -5, and -6) were affinity purified under(More)
Physical, genetic, and chemical-genetic interactions centered on the conserved chaperone Hsp90 were mapped at high resolution in yeast using systematic proteomic and genomic methods. Physical interactions were identified using genome-wide two hybrid screens combined with large-scale affinity purification of Hsp90-containing protein complexes. Genetic(More)