Andrew Dimitrijevic

Arnold Starr12
Henry J Michalewski9
12Arnold Starr
9Henry J Michalewski
Learn More
Steady-state evoked potentials can be recorded from the human scalp in response to auditory stimuli presented at rates between 1 and 200 Hz or by periodic modulations of the amplitude and/or frequency of a continuous tone. Responses can be objectively detected using frequency-based analyses. In waking subjects, the responses are particularly prominent at(More)
This article considers the efficiency of evoked potential audiometry using steady-state responses evoked by multiple simultaneous stimuli with carrier frequencies at 500, 1000, 2000, and 4000 Hz. The general principles of signal-to-noise enhancement through averaging provide a basis for determining the time required to estimate thresholds. The advantage of(More)
OBJECTIVE To define cortical brain responses to large and small frequency changes (increase and decrease) of high- and low-frequency tones. METHODS Event-Related Potentials (ERPs) were recorded in response to a 10% or a 50% frequency increase from 250 or 4000 Hz tones that were approximately 3 s in duration and presented at 500-ms intervals. Frequency(More)
Tinnitus is a phantom sensation of sound in the absence of external stimulation. However, external stimulation, particularly electric stimulation via a cochlear implant, has been shown to suppress tinnitus. Different from traditional methods of delivering speech sounds or high-rate (>2000 Hz) stimulation, the present study found a unique(More)
OBJECTIVE The number of steady-state responses evoked by the independent amplitude and frequency modulation (IAFM) of tones has been related to the ability to discriminate speech sounds as measured by word recognition scores (WRS). In the present study IAFM stimulus parameters were adjusted to resemble the acoustic properties of everyday speech to see how(More)
Steady-state responses are evoked potentials that maintain a stable frequency content over time. In the frequency domain, responses to rapidly presented stimuli show a spectrum with peaks at the rate of stimulation and its harmonics. Auditory steady-state responses can be reliably evoked by tones that have been amplitude-modulated at rates between 75 and(More)
OBJECTIVE Auditory temporal processes in quiet are impaired in auditory neuropathy (AN) similar to normal hearing subjects tested in noise. N100 latencies were measured from AN subjects at several tone intensities in quiet and noise for comparison with a group of normal hearing individuals. METHODS Subjects were tested with brief 100 ms tones (1.0 kHz,(More)
Multiple auditory steady-state responses were evoked by eight tonal stimuli (four per ear), with each stimulus simultaneously modulated in both amplitude and frequency. The modulation frequencies varied from 80 to 95 Hz and the carrier frequencies were 500, 1000, 2000, and 4000 Hz. For air conduction, the differences between physiologic thresholds for these(More)
There have been a number of studies suggesting that oscillatory alpha activity (~10 Hz) plays a pivotal role in attention by gating information flow to relevant sensory regions. The vast majority of these studies have looked at shifts of attention in the spatial domain and only in a single modality (often visual or sensorimotor). In the current(More)
OBJECTIVE To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. METHODS Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of(More)