Andrew D. Greentree

Learn More
In a one-off Minority game, when a group of players agree to collaborate they gain an advantage over the remaining players. We consider the advantage obtained in a quantum Minority game by a coalition sharing an initially entangled state versus that obtained by a coalition that uses classical communication to arrive at an optimal group strategy. In a model(More)
Linear camera responses are required for recovering the total amount of incident irradiance, quantitative image analysis, spectral reconstruction from camera responses and characterisation of spectral sensitivity curves. Two commercially-available digital cameras equipped with Bayer filter arrays and sensitive to visible and near-UV radiation were(More)
We demonstrate how structured decompositions of unitary operators can be employed to derive control schemes for finite-level quantum systems that require only sequences of simple control pulses such as square wave pulses with finite rise and decay times or Gaussian wavepackets. To illustrate the technique, it is applied to find control schemes to achieve(More)
Coherent Tunneling Adiabatic Passage (CTAP) has been proposed as a long-range physical qubit transport mechanism in solid-state quantum computing architectures. Although the mechanism can be implemented in either a chain of quantum dots or donors, a 1D chain of donors in Si is of particular interest due to the natural confining potential of donors that can(More)
BACKGROUND The study of the signal-receiver relationship between flowering plants and pollinators requires a capacity to accurately map both the spectral and spatial components of a signal in relation to the perceptual abilities of potential pollinators. Spectrophotometers can typically recover high resolution spectral data, but the spatial component is(More)
Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters(More)
The use of adiabatic passage techniques to mediate particle transport through real space, rather than phase space, is becoming an interesting possibility. We have investigated the properties of coherent tunneling adiabatic passage (CTAP) with alternating tunneling matrix elements. This coupling scheme, not previously considered in the donor in silicon(More)
We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices(More)