Learn More
Disruption of components in the transforming growth factor-beta (TGF-beta) signalling cascade is a common occurrence in human cancers. TGF-beta pathway activation is accomplished via serine/threonine kinase receptors and intracellular Smad transcription factors. A key regulatory step involves specific ubiquitination by Smurfs that mediate the proteasomal(More)
Pax6 transcription is under the control of two main promoters (P0 and P1), and these are autoregulated by Pax6. Additionally, Pax6 expression is under the control of the TGFbeta superfamily, although the precise mechanisms of such regulation are not understood. The effect of TGFbeta on Pax6 expression was studied in the FHL124 lens epithelial cell line and(More)
Myelin basic protein (MBP) dissociated from brain myelin membranes when they were incubated (37 degrees C; pH 7.4) at physiological ionic strength. Zinc ions inhibited, and calcium promoted, this process. Protease activity in the membrane preparations cleaved the dissociated MBP into both small (less than 4 kilodaltons) and large (greater than 8(More)
The balance between matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), is pivotal in the remodeling of extracellular matrix. TGF-beta has profound effects on extracellular matrix homeostasis, in part via its ability to alter this balance at the level of gene expression. The intracellular signaling(More)
Members of the transforming growth factor beta (TGF-beta) family transduce signals through Smad proteins. Smad signaling can be regulated by the Ras/Erk/mitogen-activated protein pathway in response to receptor tyrosine kinase activation and the gamma interferon pathway and also by the functional interaction of Smad2 with Ca(2+)-calmodulin. Here we report(More)
TGF-beta (transforming growth factor-beta) signals through serine/threonine kinase receptors and intracellular Smad transcription factors. An important regulatory step involves specific ubiquitination by Smurfs (Smad-ubiquitin regulatory factors), members of the HECT (homologous to E6-associated protein C-terminus) ubiquitin ligase family, which mediate the(More)
Cancers that grow in bone, such as myeloma and breast cancer metastases, cause devastating osteolytic bone destruction. These cancers hijack bone remodeling by stimulating osteoclastic bone resorption and suppressing bone formation. Currently, treatment is targeted primarily at blocking bone resorption, but this approach has achieved only limited success.(More)
Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFβ-dependent biological outputs such as epithelial-mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal(More)
Calmodulin-dependent protein kinase II (Cam kinase II) is known to desensitise epidermal growth factor receptor (HER-1) tyrosine kinase activity by a process involving phosphorylation at serines 1046/47 in the cytoplasmic tail. We have developed an experimental system to investigate phosphorylation of the related HER-2/c-erbB2 proto-oncogene utilising(More)
BACKGROUND Epidemiological studies suggest that people who consume more than one portion of cruciferous vegetables per week are at lower risk of both the incidence of prostate cancer and of developing aggressive prostate cancer but there is little understanding of the underlying mechanisms. In this study, we quantify and interpret changes in global gene(More)