Andrew Chay

Learn More
The ability of neurons to differentially respond to specific temporal and spatial input patterns underlies information storage in neural circuits. One means of achieving spatial specificity is to restrict signaling molecules to particular subcellular compartments using anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Disruption of protein(More)
Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the(More)
Hippocampal plasticity inducing protocols vary in their activation of signal transduction pathways and resulting dependence on signaling molecules. Many long-term potentiation (LTP) inducing paradigms require both memory kinases: calcium-calmodulin dependent protein kinase II (CaMKII) and protein kinase A (PKA) signaling pathways. Both CaMKII and PKA are(More)
  • 1