Learn More
Research has suggested that outcome feedback is less effective than other forms of feedback in promoting learning by users of decision support systems. However, if circumstances can be identified where the effectiveness of outcome feedback can be improved, this offers considerable advantages, given its lower computational demands, ease of understanding and(More)
During development of the embryonic neocortex, tightly regulated expansion of neural stem cells (NSCs) and their transition to intermediate progenitors (IPs) are critical for normal cortical formation and function. Molecular mechanisms that regulate NSC expansion and transition remain unclear. Here, we demonstrate that the microRNA (miRNA) miR-17-92 cluster(More)
The precise organization of motor neuron subtypes in a columnar pattern in developing spinal cords is controlled by cross-interactions of multiple transcription factors and segmental expressions of Hox genes and their accessory proteins. Accurate expression levels and domains of these regulators are essential for organizing spinal motor neuron columns and(More)
Cerebral cortical neurons arise from radial glia (direct neurogenesis) or from intermediate progenitors (indirect neurogenesis); intriguingly, the sizes of intermediate progenitor populations and the cortices they generate correlate across species. The generation of intermediate progenitors is regulated by the transcription factor Tbr2, whose expression(More)
An important function of the RNAase-III enzyme Dicer is to process microRNA precursors into ~22-nucleotide non-coding small RNAs. But little is known about the role of Dicer in mammalian brain formation and neural stem cell (NSC) development. Here we show that Dicer plays a crucial role in controlling mouse cortical NSC development. We found that Dicer(More)
The specification of motor neuron (MN) subtypes and columnar organization in developing spinal cord is controlled by multiple transcription factors. FoxP1 drives specification of lateral motor neuron (LMN) subtypes, and we demonstrated in our previous work that FoxP1 expression levels are regulated by the microRNA miR-9. Here we show that ectopic FoxP1(More)
Cell fate reprogramming makes possible the generation of new cell types from healthy adult cells to replace those lost or damaged in disease. Additionally, reprogramming patient cells into specific cell types allows for drug screening and the development of new therapeutic tools. Generation of new neurons is of particular interest because of the potential(More)
Ferroportin disease is caused by mutation of one allele of the iron exporter ferroportin (Fpn/IREG1/Slc40a1/MTP1). All reported human mutations are missense mutations and heterozygous null mutations in mouse Fpn do not recapitulate the human disease. Here we describe the flatiron (ffe) mouse with a missense mutation (H32R) in Fpn that affects its(More)
Judgemental forecasting of exchange rates is critical for ®nancial decision-making. Detailed investigations of the potential e€ects of time-series characteristics on judgemental currency forecasts demand the use of simulated series where the form of the signal and probability distribution of noise are known. The accuracy measures Mean Absolute Error (MAE)(More)