Andrew C. Clark

Learn More
PURPOSE To compare various measures of training load (TL) derived from physiological (heart rate [HR]), perceptual (rating of perceived exertion [RPE]), and physical (global positioning system [GPS] and accelerometer) data during in-season field-based training for professional soccer. METHODS Fifteen professional male soccer players (age 24.9 ± 5.4 y,(More)
Extensive reviews of research are available on the use of ascorbic acid, and its consequent degradation pathways, in physiological conditions or food matrices. However, very little information can be found for wine-related systems. This review highlights the relevant chemistry and reactivity of ascorbic acid with a focus on its behavior and potential(More)
This study was performed to assess the impact of glutathione on the reaction between (+)-catechin and carbonyl compounds in wine-related conditions. (+)-Catechin (0.50 mM) and either glyoxylic acid (0.25 mM) or acetaldehyde (0.25 mM) were added to a model wine system with 0.0, 0.25, and 2.5 mM of glutathione added. UPLC-DAD and LC-MS analysis showed that(More)
The reactions of (+)-catechin and (-)-epicatechin with glyoxylic acid were studied in a model white wine solution. When the reactions were performed in darkness at 45 degrees C, the (-)-epicatechin concentration decreased more rapidly than that of (+)-catechin, and the (-)-epicatechin sample had twice the 440 nm absorbance of the (+)-catechin sample after(More)
The presence of copper in wine is known to impact the reductive, oxidative and colloidal stability of wine, and techniques enabling measurement of different forms of copper in wine are of particular interest in understanding these spoilage processes. Electrochemical stripping techniques developed to date require significant pretreatment of wine, potentially(More)
The exposure to sunlight of a Sauvignon blanc wine stored in bottles of different colours has been examined. Wine in darker bottles (Antique Green and French Green) showed considerably more colour development than wine in clear (Flint) or lighter (French Green) bottles, provided a high concentration of catechin-type phenolic compounds was present.(More)
This study establishes the influence of Cu(II), Fe(II), Fe(III), Zn(II), Al(III), and Mn(II) on the oxidative production of xanthylium cations from (+)-catechin and either tartaric acid or glyoxylic acid in model wine systems. The reaction was studied at 25 °C using UHPLC and LC-HRMS for the analysis of phenolic products and their isomeric distribution. In(More)
The contribution of volatile aroma compounds to the overall composition and sensory perception of wine is well recognized. The classical targeted measurement of volatile compounds in wine using GC-MS is laborious and only a limited number of compounds can be quantified at any time. Application of an automated multivariate curve resolution technique to(More)
Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the(More)
The impact of the combined ascorbic acid and sulfur dioxide antioxidants on white wine oxidation processes was investigated using a range of analytical techniques, including flow injection analysis for free and total sulfur dioxide and two chromatographic methods for ascorbic acid, its oxidative degradation products and phenolic compounds. The combination(More)