Andrew C. Baker

Learn More
The long-term response of coral reefs to climate change depends on the ability of reef-building coral symbioses to adapt or acclimatize to warmer temperatures, but there has been no direct evidence that such a response can occur. Here we show that corals containing unusual algal symbionts that are thermally tolerant and commonly associated with(More)
Bleaching and mortality of zooxanthellate corals during the 1997-98 El Nino-Southern Oscillation (ENSO) event are documented for eastern equatorial Pacific localities in Panama (Gulf of Chiriqui and Gulf of Panama) and Ecuador (Galapagos Islands and mainland coast). Overall, the very strong 1997-98 and 1982-83 ENSOs were similar in magnitude and duration,(More)
Recent molecular studies of symbiotic dinoflagellates (genus Symbiodinium) from a wide array of invertebrate hosts have revealed exceptional fine-scale symbiont diversity whose distribution among hosts, regions and environments exhibits significant biogeographic, ecological and evolutionary patterns. Here, similar molecular approaches using the internal(More)
Some reef-building corals have been shown to respond to environmental change by shifting the composition of their algal symbiont (genus Symbiodinium) communities. These shifts have been proposed as a potential mechanism by which corals might survive climate stressors, such as increased temperatures. Conventional molecular methods suggest this adaptive(More)
The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were(More)
Managing coral reefs for resilience to climate change is a popular concept but has been difficult to implement because the empirical scientific evidence has either not been evaluated or is sometimes unsupportive of theory, which leads to uncertainty when considering methods and identifying priority reefs. We asked experts and reviewed the scientific(More)
Reef corals associate with an extraordinary diversity of dinoflagellate endosymbionts (genus Symbiodinium), and this diversity has become critical to understanding how corals respond to environmental changes. A popular molecular marker for Symbiodinium diversity, the Internal Transcribed Spacer-2 (ITS-2) region of ribosomal DNA, has revealed hundreds of(More)
We report the development of 10 polymorphic molecular markers containing short tandem repeats in the cosmopolitan reef-building coral, Pocillopora damicornis, an important model species for coral health, physiology, ecology, and genetics. The availability of polymorphic DNA markers in P. damicornis can act as impetus for investigations into inheritance and(More)
Despite recent advances in identifying the causative agents of disease in corals and understanding the impact of epizootics on reef communities, little is known regarding the interactions among diseases, corals, and their dinoflagellate endosymbionts (Symbiodinium spp.). Since the genotypes of both corals and their resident Symbiodinium contribute to(More)