Andrew Binns

Learn More
To test the hypothesis that auxin-binding protein 1 (ABP1) is a receptor controlling auxin-mediated plant cell expansion, ABP1 complementary DNAs were expressed in a controllable fashion in tobacco plants and constitutively in maize cell lines. Induction of Arabidopsis ABP1 expression in tobacco leaf strips resulted in an increased capacity for(More)
Host recognition and macromolecular transfer of virulence-mediating effectors represent critical steps in the successful transformation of plant cells by Agrobacterium tumefaciens. This review focuses on bacterial and plant-encoded components that interact to mediate these two processes. First, we examine the means by which Agrobacterium recognizes the(More)
Cloned DNA sequences encoding yeast alcohol dehydrogenase and a bacterial neomycin phosphotransferase have been inserted into the T-DNA of Agrobacterium tumefaciens plasmid pTiT37 at the "rooty" locus. Transformation of tobacco stem segments with the engineered bacterial strains produced attenuated crown gall tumors that were capable of regeneration into(More)
Mutant Agrobacterium tumefaciens strain A66 is shown to differ from its wild-type progenitor (strain A6) by a spontaneous 2.7 kb DNA insert into the T-DNA region of its Ti plasmid. Tobacco stems transformed by A66 exhibit an attenuated response characterized by slow growth and shoot proliferation. Clonal analysis demonstrates that this response is due to an(More)
The T-DNA transfer apparatus of Agrobacterium tumefaciens mediates the delivery of the T-DNA into plant cells, the transfer of the IncQ plasmid RSF1010 into plant cells, and the conjugal transfer of RSF1010 between Agrobacteria. We show in this report that the Agrobacterium-to-Agrobacterium conjugal transfer efficiencies of RSF1010 increase dramatically if(More)
A Spatial Data Infrastructure (SDI) facilitates and coordinates the exchange and sharing of spatial data between stakeholders in the spatial data community. With this objective in mind, countries throughout the world are developing SDIs to manage and utilise their spatial data assets more effectively. These countries are developing SDIs to assist in various(More)
Agrobacterium tumefaciens is capable of transferring and integrating an oncogenic T-DNA (transferred DNA) from its tumor-inducing (Ti) plasmid into dicotyledonous plants. This transfer requires that the virulence genes (vir regulon) be induced by plant signals such as acetosyringone in an acidic environment. Salicylic acid (SA) is a key signal molecule in(More)
A maize genomic clone containing a zein gene (Z4) was inserted into the T-region of the T37 Ti plasmid. Agrobacterium tumefaciens cells carrying this modified Ti plasmid were used to inoculate sunflower stemlets. Callus tissue active in nopaline synthesis was grown from a single transformed cell. DNA analysis of this tissue showed that the zein gene plus(More)
Naturally occurring isomers of the dehydrodiconiferyl glucosides have been isolated from Vinca rosea crown gall tumors and have been tested for cell division promoting activities in the tobacco pith and leaf assay systems. The enantiomeric isomers A and B are active, although they are required at concentrations up to 2 orders of magnitude higher than zeatin(More)
Agrobacteria carrying mutations at the auxin-biosynthesizing loci (iaaH and iaaM of the Ti plasmid) induce shoot-forming tumors on many plant species. In some cases, e.g. Nicotiana glutinosa L., tumors induced by such mutant strains exhibit an unorganized and fully autonomous phenotype. These characteristics are stable in culture at both the tissue and(More)