Learn More
We propose a space-time stick-breaking process for the disease cluster estimation. The dependencies for spatial and temporal effects are introduced by using space-time covariate dependent kernel stick-breaking processes. We compared this model with the space-time standard random effect model by checking each model’s ability in terms of cluster detection of(More)
Despite interest in the built food environment, little is known about the validity of commonly used secondary data. The authors conducted a comprehensive field census identifying the locations of all food outlets using a handheld global positioning system in 8 counties in South Carolina (2008-2009). Secondary data were obtained from 2 commercial companies,(More)
Urban and rural areas may have different levels of environmental contamination and different potential sources of exposure. Many metals, i.e., arsenic (As), lead (Pb), and mercury (Hg), have well-documented negative neurological effects, and the developing fetus and young children are particularly at risk. Using a database of mother and child pairs, three(More)
There has long been a recognition that place matters in health, from recognition of clusters of yellow fever and cholera in the 1800s to modern day analyses of regional and neighborhood effects on cancer patterns. Here we provide a summary of discussions about current practices in the spatial analysis of georeferenced cancer data by a panel of experts(More)
A range of point process models which are commonly used in spatial epidemiology applications for the increased incidence of disease are compared. The models considered vary from approximate methods to an exact method. The approximate methods include the Poisson process model and methods that are based on discretization of the study window. The exact method(More)
BACKGROUND The association between metals in water and soil and adverse child neurologic outcomes has focused on the singular effect of lead (Pb), mercury (Hg), and arsenic (As). This study describes the complex association between soil concentrations of As combined with Pb and the probability of intellectual disability (ID) in children. METHODS We used a(More)
BACKGROUND There is increasing interest in the study of place effects on health, facilitated in part by geographic information systems. Incomplete or missing address information reduces geocoding success. Several geographic imputation methods have been suggested to overcome this limitation. Accuracy evaluation of these methods can be focused at the level of(More)
BACKGROUND European ecologic studies suggest higher socioeconomic status is associated with higher incidence of type 1 diabetes. Using data from a case-control study of diabetes among racially/ethnically diverse youth in the United States (U.S.), we aimed to evaluate the independent impact of neighborhood characteristics on type 1 diabetes risk. Data were(More)
In spatial epidemiology, a scaling effect due to an aggregation of data from a finer to a coarser level is a common phenomenon. This article focuses on addressing this issue using a hierarchical Bayesian modeling framework. We propose three different multiscale models. The first two models use a shared random effect that the finer level inherits from the(More)