Learn More
We characterize and extend a highly efficient method for constructing shotgun fragment libraries in which transposase catalyzes in vitro DNA fragmentation and adaptor incorporation simultaneously. We apply this method to sequencing a human genome and find that coverage biases are comparable to those of conventional protocols. We also extend its capabilities(More)
Genomes assembled de novo from short reads are highly fragmented relative to the finished chromosomes of Homo sapiens and key model organisms generated by the Human Genome Project. To address this problem, we need scalable, cost-effective methods to obtain assemblies with chromosome-scale contiguity. Here we show that genome-wide chromatin interaction data(More)
The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption--both intentionally and through widespread cross-contamination--and for(More)
Technical advances have enabled the collection of genome and transcriptome data sets with single-cell resolution. However, single-cell characterization of the epigenome has remained challenging. Furthermore, because cells must be physically separated before biochemical processing, conventional single-cell preparatory methods scale linearly. We applied(More)
Haplotype information is essential to the complete description and interpretation of genomes, genetic diversity and genetic ancestry. Although individual human genome sequencing is increasingly routine, nearly all such genomes are unresolved with respect to haplotype. Here we combine the throughput of massively parallel sequencing with the contiguity(More)
Epigenetic modifications such as carbon 5 methylation of the cytosine base in a CpG dinucleotide context are involved in the onset and progression of human diseases. A comprehensive understanding of the role of genome-wide DNA methylation patterns, the methylome, requires quantitative determination of the methylation states of all CpG sites in a genome. So(More)
Recent years have seen development and implementation of anticancer therapies targeted to particular gene mutations, but methods to assay clinical cancer specimens in a comprehensive way for the critical mutations remain underdeveloped. We have developed UW-OncoPlex, a clinical molecular diagnostic assay to provide simultaneous deep-sequencing information,(More)
Human genomes are diploid and, for their complete description and interpretation, it is necessary not only to discover the variation they contain but also to arrange it onto chromosomal haplotypes. Although whole-genome sequencing is becoming increasingly routine, nearly all such individual genomes are mostly unresolved with respect to haplotype,(More)
Nanopore sequencing of DNA is a single-molecule technique that may achieve long reads, low cost and high speed with minimal sample preparation and instrumentation. Here, we build on recent progress with respect to nanopore resolution and DNA control to interpret the procession of ion current levels observed during the translocation of DNA through the pore(More)
We describe a method that exploits contiguity preserving transposase sequencing (CPT-seq) to facilitate the scaffolding of de novo genome assemblies. CPT-seq is an entirely in vitro means of generating libraries comprised of 9216 indexed pools, each of which contains thousands of sparsely sequenced long fragments ranging from 5 kilobases to > 1 megabase.(More)