Learn More
Transcranial magnetic stimulation (TMS) is an established neurophysiological tool to examine the integrity of the fast-conducting corticomotor pathways in a wide range of diseases associated with motor dysfunction. This includes but is not limited to patients with multiple sclerosis, amyotrophic lateral sclerosis, stroke, movement disorders, disorders(More)
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a common, fatal motor neuron disorder with no effective treatment. Approximately 10% of cases are familial ALS (FALS), and the most common genetic abnormality is superoxide dismutase-1 (SOD1) mutations. Most ALS research in the past decade has focused on the neurotoxicity of mutant SOD1, and this knowledge(More)
Amyotrophic lateral sclerosis is characterised by the progressive loss of motor neurons in the brain and spinal cord. This neurodegenerative syndrome shares pathobiological features with frontotemporal dementia and, indeed, many patients show features of both diseases. Many different genes and pathophysiological processes contribute to the disease, and it(More)
Peak-to-peak measurement of the maximum amplitude motor evoked potential (MAXMEP) elicited by 20 consecutive transcranial magnetic stimuli recorded from the contracting thenar and hypothenar muscles measured 9.8 +/- 2.0 mV and 7.25 +/- 2.9 mV respectively (P less than 0.01). The ratio of MAXMEP/CMAP measured 92.6 +/- 25.8% and 54.8 +/- 12.3% respectively (P(More)
We compared the diagnostic capabilities of MRI to CT, evoked potentials (EP), and CSF oligoclonal banding analysis in a prospective evaluation of 200 patients with suspected multiple sclerosis (MS). MRI was the best method for demonstrating dissemination in space. An abnormal appropriate EP in monosymptomatic disease was usually supported by MRI and CSF(More)
A consensus meeting was held to determine the best use and interpretation of electrophysiological data in the diagnosis of ALS. The utility of needle EMG and nerve conduction studies was affirmed. It is recommended that electrophysiological evidence for chronic neurogenic change should be taken as equivalent to clinical information in the recognition of(More)